
On weighted graph separation problems and �ow-augmentation
∗

Eun Jung Kim
1
, Tomáš Masařı́k

2
, Marcin Pilipczuk

2
, Roohani Sharma

3
, and Magnus

Wahlström
4

1
Université Paris-Dauphine, PSL Research University, CNRS, UMR 7243, LAMSADE, 75016,

Paris, France.

2
University of Warsaw, Warsaw, Poland

3
Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany.

4
Royal Holloway, University of London, TW20 0EX, UK

Abstract

One of the �rst application of the recently introduced technique of �ow-augmentation [Kim et

al., STOC 2022] is a �xed-parameter algorithm for the weighted version of Directed Feedback

Vertex Set, a landmark problem in parameterized complexity. In this note we explore applicability

of �ow-augmentation to other weighted graph separation problems parameterized by the size of

the cutset. We show the following.

• In weighted undirected graphs Multicut is FPT, both in the edge- and vertex-deletion version.

• �e weighted version of Group Feedback Vertex Set is FPT, even with an oracle access to

group operations.

• �e weighted version of Directed Subset Feedback Vertex Set is FPT.

Our study reveals Directed Symmetric Multicut as the next important graph separation problem

whose parameterized complexity remains unknown, even in the unweighted se�ing.

1 Introduction

�e family of graph separation problems includes a wide range of combinatorial problems where the

goal is to remove a small part of the input graph to obtain some separation properties. For example, in

the Multicut problem, the input graph G is equipped with a set of terminal pairs T ⊆ V (G)× V (G)
and the separation objective is to destroy, for every (s, t) ∈ T , all paths from s to t. In the Subset

Feedback Edge/Vertex Set problems, the input graph G is equipped with a set R ⊆ E(G) of red

edges and the goal is to destroy all cycles that contain at least one red edge.
1

We remark that in directed

graphs, one can equivalently require to destroy all closed walks containing at least one red edge.

Both these problems (and many others) can be considered in multiple variants: graphs can be

undirected or directed, we are allowed to delete edges or vertices, weights can be present, etc. In this

paper we consider both edge- and vertex-deletion variants and both cardinality and weight budget

for the solution. �at is, the input graph G is equipped with a weight function ω that assigns positive

integral weights to deletable objects (i.e., edges or vertices), and we are given two integers: k, the

∗

�is research is a part of a project that have received funding from the European Research Council (ERC) under the

European Union’s Horizon 2020 research and innovation programme Grant Agreement 714704 (M. Pilipczuk). Eun Jung Kim

is supported by the grant from French National Research Agency under JCJC program (ASSK: ANR-18-CE40-0025-01).

1

In the literature, sometimes one considers red vertices instead of red edges. Since there are simple reductions between

the variants (cf. [11]), we prefer to work with red edges.

1

ar
X

iv
:2

20
8.

14
84

1v
2

 [
cs

.D
S]

 2
 S

ep
 2

02
2

maximum number of deleted objects, and W , the maximum total weight of the deleted objects in the

sought solution.

�e study of parameterized complexity of graph separation problems has been a vivid line for

the past two decades, and resulted in many tractability results and a wide range of algorithmic tech-

niques: important separators and shadow removal [3, 6, 7, 11, 26, 22, 31, 33], branching guilded by an

LP relaxation [10, 14, 16], matroid-based techniques [23, 24], treewidth reduction [27], randomized

contractions [4, 8], and, most recent, �ow-augmentation [19, 20]. However, the vast majority of these

works considered only the unweighted versions of the problems, for a very simple reason: we did not

know how to handle their weighted counterparts. In particular, one of the most fundamental notion

— important separators, introduced by Marx in 2004 [26] — relies on a greedy argument that breaks

down in the presence of weights. �e quest to understand the weighted counterparts of studied graph

separation problems, with a speci�c goal to resolve the parameterized complexity of the weighted

version of Directed Feedback Vertex Set — the landmark problem in parameterized complexity [6]

— was raised by Saurabh in 2017 [35] (see also [25]).

�is question has been resolved recently by Kim et al. [20] with a new algorithmic technique

called �ow-augmentation. Apart from proving �xed-parameter tractability of the weighted version

of Directed Feedback Vertex Set, they also showed �xed-parameter tractability of Chain SAT,

resolving another long-standing open problem [5]. Both the aforementioned results are in fact the same

relatively simple algorithm for a more general problem Weighted Bundled Cut with Order, and

solve also the weighted version of Chain SAT.

Very recently, Galby et al. [13] used the �ow-augmentation technique to design an FPT algorithm

for weighted Multicut on trees. Our results thus extend theirs, by generalizing the input graphs from

trees to arbitrary undirected graphs.

Our results. �e goal of this note is to explore for which other graph separation problems the �ow-

augmentation technique helps in ge�ing �xed-parameter algorithms for weighted graph separation

problems. (All algorithms below are randomized; all randomization comes from the �ow-augmentation

technique.)

We start with the Multicut problem in undirected graphs, whose parameterized complexity — in

the unweighted se�ing — had been a long-standing open problem until being se�led in the a�rmative

by two independent groups of researchers in 2011 [2, 31].

�eorem 1.1. Weighted Multicut, parameterized by the cardinality of the cutset, is randomized FPT,

both in the edge- and vertex-deletion variants.

�eorem 1.1 follows from a combination of two arguments. First, we revisit the reduction of Marx

and Razgon from Multicut to a bipedal variant, presented in the conference version of their paper [29]

and show how to replace one greedy step based on important separators with a di�erent, weights-

resilient step. �en, a folklore reduction to a graph separation problem called CoupledMin-Cut, spelled

out in [18], does the job: the �xed-parameter tractability of a wide generalization of Coupled Min-Cut,

including its weighted variant, is one of the main applications of �ow-augmentation [19, 20, 21].

Multiway Cut is a special case of Multicut where the input graph G is equipped with a set

T ⊆ V (G) of terminals and T = {(s, t) | s, t ∈ T, s 6= t}, that is, we are to destroy all paths between

distinct terminals. �us, �eorem 1.1 implies the following.

Corollary 1.2. Weighted Multiway Cut, parameterized by the cardinality of the cutset, is randomized

FPT, both in the edge- and vertex-deletion variants.

We remark that in directed graphs the parameterized complexity of Multicut is fully understood:

without weights, it is W[1]-hard for 4 terminal pairs [32] and FPT for 3 terminal pairs [15], but

with weights it is already W[1]-hard for 2 terminal pairs [15], while for 1 terminal pair it is known

2

under the name of Bi-Objective st-cut and its �xed-parameter tractability follows easily via �ow-

augmentation [20]. Furthermore, while Multiway Cut on directed graphs is FPT in the unweighted

se�ing [7], on directed graphs Multicut with 2 terminal pairs reduces to Multiway Cut with two

terminals [7], hence Multiway Cut with weights is W[1]-hard and without weights is FPT on directed

graphs.

�en we turn our a�ention to Group Feedback Edge/Vertex Set. Here, the input graph G
is equipped with a group Γ, not necessarily Abelian, and an assignment ψ, called the group labels,

that assigns to every e ∈ E(G) and v ∈ e an element ψ(e, v) ∈ Γ such that for e = uv we have

ψ(e, u) + ψ(e, v) = 0.
2

With a walk C = (v1, e1, v2, e2, . . . , v`, e`, v`+1) we associate a sum ψ(C) =∑`
i=1 ψ(ei, vi); a walk C is a null walk in (G,ψ) if ψ(C) = 0 and non-null otherwise. �is is well-

de�ned even for non-Abelian groups, i.e., a cycle being null or non-null does not depend on the direction

of traversal or the choice of starting vertex v1 [9]. �e separation goal is to destroy all non-null cycles

(equivalently, all non-null closed walks) by edge or vertex deletions.

�eorem 1.3. Weighted Group Feedback Edge Set and Weighted Group Feedback Vertex Set,

parameterized by the cardinality of the cutset, are randomized FPT.

Since Weighted Subset Feedback Edge/Vertex Set can be modeled as Weigted Group Feedback

Edge/Vertex Set with group Γ = ZR2 (cf. [9]), we immediately have the following corollary.

Corollary 1.4. Weighted Subset Feedback Edge Set and Weighted Subset Feedback Vertex Set,

parameterized by the cardinality of the cutset, are randomized FPT.

�e currently fastest FPT algorithm for (unweighted) Group Feedback Vertex Set is due to Iwata,

Wahlström, and Yoshida [16] and uses sophisticated branching guided by an LP relaxation. To prove

�eorem 1.3, we revisit an older (and less e�cient) FPT algorithm due to Cygan et al. [9] that performs

some branching steps to reduce the problem to multiple instances of Multiway Cut. We observe that

the branching easily adapts to the weighted se�ing, and the algorithm for Weighted Multiway Cut is

provided by Corollary 1.2.

We now move to directed graphs. As already mentioned, the parameterized complexity of both

weighted and unweighted Directed Multicut (and Directed Multiway Cut) is already fully under-

stood [15, 32]. Our main result here is �xed-parameter tractability of Weighted Directed Subset

Feedback Edge/Vertex Set.

�eorem 1.5. Weighted Directed Subset Feedback Edge Set and Weighted Directed Subset Feed-

back Vertex Set, parameterized by the cardinality of the cutset, are randomized FPT.

�eorem 1.5 follows from a surprisingly delicate reduction to Weighted Bundled Cut with

Order, known to be FPT via �ow-augmentation [20].

SkewMulticut is a special case of DirectedMulticut where the set T has the form {(si, tj) | 1 ≤
i ≤ j ≤ `} for some terminals s1, . . . , s`, t1, . . . , t` ∈ V (G). Skew Multicut naturally arises in the

context of Directed Feedback Vertex Set if one applies the iterative compression technique. In the

unweighted se�ing, SkewMulticut is long known to be FPT parameterized by the size of the cutset [3].

With weights, [20] showed that Skew Multicut is FPT when parameterized by k + `. We observe

a simple reduction to Weighted Directed Subset Feedback Vertex Set, yielding �xed-parameter

tractability when parameterizing by k only.

Corollary 1.6. Weighted Skew Multicut, parameterized by the cardinality of the cutset, is randomized

FPT, both in the edge- and vertex-deletion variants.

2

�orough this paper, we use + for the group operation, 0 for the neutral element in the group, and − for the group

inverse, to conform with the standard terminology of null cycles in GFVS. We note that this is in tension with the convention

that a group operation wri�en as + tends to imply an Abelian group.

3

Proof. Let (G, (si, ti)
`
i=1, ω, k,W) be a Weighted Skew Multicut instance (in the edge- or vertex-

deletion se�ing) where ω is the weight function (on the edges or vertices respectively) and W is the

weight budget of the solution. Construct a graph G′ and a set of red edges R as follows: start with

G′ = G, R = ∅ and, for every 1 ≤ i ≤ j ≤ `, introduce a red edge (tj , si) and add it to G′ (in

the edge-deletion se�ing, the new edge has weight W + 1, that is, it is e�ectively undeletable). It

is easy to see that the resulting Weighted Directed Subset Feedback Edge/Vertex Set instance

(G′, R, ω, k,W) is equivalent to the input Weighted Skew Multicut instance: any closed walk in G′

involving a red edge contains a subpath from si to tj for some 1 ≤ i ≤ j ≤ ` without any red edge, and

any path in G from si to tj for 1 ≤ i ≤ j ≤ ` closes up to a cycle with a red edge (tj , si) in G′.

�e running time bounds of all our algorithms are of the form 2poly(k)poly(|V (G)|), where both poly-

nomial dependencies have unspeci�ed large degree coming from the use of involved �ow-augmentation-

based algorithms of [20, 21].

Organization. We introduce the necessary tools, in particular the used corollaries of the �ow-

augmentation technique, in Section 2. �eorem 1.1 is proven in Section 3, �eorem 1.3 is proven

in Section 4, and �eorem 1.5 is proven in Section 5. Section 6 concludes the paper and identi�es

Directed Symmetric Multicut as a next problem whose parameterized complexity remains open.

2 Preliminaries

2.1 Edge- and vertex-deletion variants

In directed graphs, there is a simple reduction from the vertex-deletion se�ing to the edge-deletion

one: replace every vertex v with two vertices v+ and v− and an edge (v−, v+); every previous arc

(u, v) becomes an arc (u+, v−). Now, the deletion of the vertex v corresponds to the deletion of the arc

(v−, v+). Hence, in Section 5 we will consider only the edge-deletion variant, that is, Directed Subset

Feedback Edge Set.

No such simple reduction is available in undirected graphs and, in fact, in some cases the vertex-

deletion variant turns out to be signi�cantly more di�cult (cf. the k-Way Cut problem [4, 17, 26]). In

the presence of weights, there is a simple reduction from the edge-deletion variant to the vertex-deletion

variant: subdivide every edge with a new vertex that inherits the weight of the edge it is placed on,

and set the weight of the original vertices to +∞, making them undeletable. (For clarity, we allow the

weight function ω to a�ain the value +∞, which is equivalent to any weight larger than W and models

an undeletable edge or vertex.) �us, both in Section 3 and in Section 4 we consider the vertex-deletion

variants.

2.2 Iterative Compression

All problems considered in this paper are monotone in the sense that deletion of an edge or a vertex

from the input graph cannot turn a Yes-instance into a No-instance. �is allows to use the standard

technique of iterative compression [34]: We enumerate V (G) = {v1, v2, . . . , vn} for n = |V (G)|, denote

Gi = G[{v1, . . . , vi}] for 0 ≤ i ≤ n and iteratively solve the problem on graphs G0, G1, . . . , Gn = G.

If the instance for Gi turns out to be a No-instance, we deduce that the input instance is a No-instance,

too. Otherwise, the computed solution for Gi allows us to infer a set X ′ ⊆ V (Gi) of size at most k
such that in Gi −X ′ already has the desired separation (i.e., induces a Yes-instance with parameter

k = 0). We set X = X ′ ∪ {vi+1} and observe that Gi+1 −X = Gi −X ′ and |X| ≤ k + 1.

Furthermore, in all considered problems, using self-reducibility it is immediate to turn an algorithm

that only gives a yes/no answer into an algorithm that, in case of a positive answer, returns a cutset

that is a solution.

4

Hence, in all our algorithmic results, we can solve a compression version of the problem. �at is,

we can assume that our algorithm is additionally given on input a set X ⊆ V (G) of size at most k + 1
such that G−X already satis�es the desired separation (i.e., has no cycle with a red edge in case of

Subset Feedback Edge Set etc.).

Furthermore, in the problems that involve vertex deletions (i.e., Sections 3 and 4), we can additionally

branch on the set X into 2|X| options, guessing a set Y ⊆ X of vertices that are included in the sought

solution. In each branch, we delete Y from the graph and the set X , decrease k by |Y | and decrease W
by the weight of Y . Furthemore, we set the weight of the remaining vertices of X \ Y to +∞, so they

become undeletable. In other words, in Sections 3 and 4 we solve a disjoint compression variant of the

problem, where the sought solution is supposed to be disjoint with the set X .

2.3 Generalized Digraph Pair Cut

We will not need �ow-augmentation in its raw form, but only one algorithmic corollary of this technique.

An instance of Generalized Digraph Pair Cut (GDPC for short) consists of:

• a directed multigraph G with two distinguished vertices s, t ∈ V (G);

• a multiset C of (unordered) pairs of vertices of G, called clauses;

• a family B of pairwise disjoint subsets of E(G) ∪ C called bundles such that no bundle contains

two copies of the same arc or two copies of the same pair;

• a weight function ω : B → Z+;

• two integers k and W .

A set Z ⊆ E(G) is a cut in a GDPC instance I = (G, s, t, C,B, ω, k,W) if Z ⊆ E(G) ∩
⋃
B∈B B (i.e.,

Z contains only edges of bundles) and there is no path from s to t in G− Z . A cut Z violates an edge

e ∈ E(G) if e ∈ Z and violates a clause uv ∈ C if both u and v are reachable from s in G − Z . A

bundle is violated by Z if it contains an edge or a clause violated by Z . An edge, a clause, or a bundle

not violated by Z is satis�ed by Z . A cut Z is a solution if every clause violated by Z is part of a bundle,

Z violates at most k bundles, and the total weight of violated bundles is at most W . (Recall that a cut

is required to contain only edges of bundles, that is, it satis�es all edges outside bundles.) �e GDPC

problem asks for an existence of a solution.

GDPC, parameterized by k, is W[1]-hard even in the unweighted se�ing and without clauses: it

su�ces to have bundles consisting of two edges for the hardness [28]. However, �ow-augmentation

yields �xed-parameter tractability of some speci�c useful restrictions of GDPC.

For a bundle B ∈ B, let V (B) be the set of vertices that are involved in an arc or a clause of B
and let GB be an undirected graph with V (GB) = V (B) \ {s, t} and uv ∈ E(GB) if B contains an

arc (u, v), an arc (v, u), or a clause uv. A bundle B is 2K2-free if GB is 2K2-free, that is, it does not

contain 2K2 (the four-vertex graph consisting of two independent edges) as an induced subgraph. An

instance I of GDPC is 2K2-free if every bundle of I is 2K2-free. Finally, an instance I is b-bounded if

for every B ∈ B we have |V (B)| ≤ b.
One of the main algorithmic corollaries of the �ow-augmentation technique is the tractability of

2K2-free b-bounded instances of GDPC.

�eorem 2.1 ([21], �eorem 3.3). �ere exists a randomized polynomial-time algorithm for Generalized

Digraph Pair Cut restricted to 2K2-free b-bounded instances that never accepts a No-instance and accepts
a Yes-instance with probability 2−poly(k,b).

5

For Directed Subset Feedback Edge Set it will be more convenient to look at a di�erent restriction

of GDPC. Let I = (G, s, t, ∅,B, ω, k,W) be a GDPC instance without clauses. An arc e ∈ E(G) is

crisp if it is not contained in any bundle, and so� otherwise. An arc e ∈ E(G) is deletable if it is so�

and there is no copy of e in G that is crisp. Note that a cut needs to contain so� arcs only and in fact

we can restrict our a�ention to cuts containing only deletable arcs. A bundle B ∈ B has pairwise linked

deletable edges if for every two deletable arcs e1, e2 ∈ B that are not incident with either s or t, there is

a path from an endpoint of one of the edges to an endpoint of the other that does not use an edge of

another bundle (i.e., uses only edges of B and crisp edges).

In [20], a notion of Bundled Cut with Order has been introduced as one variant of GDPC without

clauses that is tractable. In [21], it was observed that the notion of pairwise linked deletable edges is

slightly more general than the “with order” assumption and is more handy.

�eorem 2.2 ([21], �eorem 3.21). �ere exists a randomized polynomial-time algorithm that, given a

GDPC instance I = (G, s, t, ∅,B, ω, k,W) with no clauses and whose every bundle has pairwise linked

deletable edges, never accepts a No-instance and accepts a Yes-instance with probability 2−O(k
4d4 log(kd))

where d is the maximum number of deletable arcs in a single bundle.

Note that if I is b-bounded, then d ≤ b2.

3 Multicut

�is section is devoted to the proof of �eorem 1.1.

As discussed in Section 2, we can restrict ourselves to the vertex-deletion variant. Let I =
(G, T , ω, k,W) be an instance of Weighted Multicut. Let T =

⋃
(s,t)∈T {s, t} be the set of all

terminals. By a simple reduction, we can assume that all terminals have weight +∞ and form an

independent set: for every (s, t) ∈ T , add a new vertex s′ adjacent to s, add a new vertex t′ adjacent to

t, set ω(s′) = ω(t′) = +∞ and replace (s, t) with (s′, t′) in T .

We also use iterative compression, but in the ordering v1, . . . , vn of V (G) we start with terminals.

Note that the subgraph of G induced by the terminals is edgeless and thus admits a solution being the

emptyset. As a result, using standard iterative compression step discussed in Section 2 we can assume

that the algorithm is given access to a set X ⊆ V (G) \ T of size |X| ≤ k + 1 such that for every

(s, t) ∈ T there is no path from s to t in G−X and we are to check if there is a solution disjoint with

X . We can set ω(x) = +∞ for every x ∈ X .

We closely follow the steps in Section 5 of [30], reengineering only one branching step that originally

uses important separators.

Fix a hypothetical solution Z . We �rst guess how the vertices of X are partitioned between

connected components of G− Z . �is results in 2O(k log k) subcases. If two vertices of X are guessed

to be in the same connected component of G− Z , we can merge them into a single vertex (recall that

the solution Z is disjoint with X). A�er this step, we can assume that every connected component

of G − Z contains at most one vertex of X and X is an independent set. For brevity, we say that

Y ⊆ V (G) \ (X ∪ T) is a multiway cut if every connected component of G− Y contains at most one

vertex of X . �us, it su�ces to develop a randomized FPT algorithm that (a) accepts with constant

probability an instance that admits a solution that is a multiway cut; (b) never accepts a No-instance.

An instance is bipedal if X is an independent set and for every connected component C of G−X ,

we have |NG(C)| ≤ 2, that is, C is adjacent to at most two vertices of X . In Section 3.2 we show

how to reduce a bipedal instance to a GDPC instance handled by �eorem 2.1. We emphasize that we

do not claim authorship of this reduction: while there is no citeable source of this reduction, it has

been �oating around in the community in the last years. �e reduction, in the edge-deletion se�ing

(and leading to an undirected analog of GDPC) has been spelled out in [18]. We include it here for

completeness of the argument.

6

Section 3.1 describes a branching algorithm, closely following the arguments of [30], whose goal is

to break connected components C of G−X with |NG(C)| > 2. In the leaves of the branching process

we obtain bipedal instances that are passed to the algorithm of Section 3.2.

3.1 Branching on a multilegged component

�e algorithm is a recursive branching routine on an instance (G, T , ω, k,W,X) where X is an

independent set and a multicut for T , and the hypothetical solution is also a multiway cut for X . In the

beginning |X| ≤ k + 1 as discussed earlier. During the branching algorithm one may delete vertices,

merge vertices or grow the set X while maintaining that the hypothetical solution is also a multiway

cut for (the new) X .

In a recursive call, we start with a few cleaning steps. At every moment, apply the �rst applicable

reduction step.

1. If ∅ is a solution, return Yes.

2. If k ≤ 0, W ≤ 0, or X is not an independent set, return No.

3. If the number of connected components C of G−X with |NG(C)| > 1 is more than k, return

No. (Note that every such component needs to contain at least one vertex of every multiway cut.)

4. If there exists x ∈ X such that the cardinality of the minimum-cardinality vertex cut between x
and X \ x is of size larger than k, return No. (Recall that the solution is also a multiway cut for

X .)

5. If there exists a vertex v that admits a family P of k + 2 paths that start in v, end in distinct

vertices of X , and are vertex-disjoint except for v, delete v, decrease k by one, decrease W by

ω(v), and recurse. (Note that every such vertex v needs to be included in any multiway cut of

size at most k.)

6. If there exists a connected component C of G that do not contain both vertices of any terminal

pair (s, t) ∈ T and contains at most one vertex of X , delete it and all terminal pairs involving

a vertex of C . (Recall that for every (s, t) ∈ T , the terminals s and t lie in di�erent connected

components of G−X . Hence, this rule applies to any component C that contains no vertex of

X and to any isolated vertex of X .)

7. If |X| > k(k + 1), return No. (Since the previous reduction rule is inapplicable, for every

multiway cut Z , every z ∈ Z is adjacent to at most k + 1 connected components of G − Z
that contain a vertex of X . Also, since Z is a multiway cut for X , every vertex of X is in a

distinct connected component of G− Z . Further, since the previous rule is not applicable, there

does not exist a connected component of G− Z that has no neighbour in Z . Indeed, as such an

isolated component will have at most one vertex from each terminal pair in T because Z is a

solution and at most one vertex of X since Z is a multiway cut of Z . �erefore, |X| is at most

the number of connected components of G − Z that intersect X , which is upper bounded by

|Z|(k + 1) ≤ k(k + 1).)

8. If the current instance is bipedal, pass it to the algorithm of Section 3.2.

A component C of G − X is nontrivial if |NG(C)| > 1. If neither of the reduction steps is

applicable, we have at most k nontrivial connected components and the size of the neighbourhood of

each component of G−X is at most |X| ≤ k(k + 1).

At every branching step, we will ensure that one of the following progresses happen in any recursive

call:

7

• the instance will be resolved immediately by reduction rules 1-4 or 7, or

• the parameter k decreases, or

• the parameter k stays the same, but the number of nontrivial connected components plus the

number vertices of X adjacent to a nontrivial component increases.

We observe that the reduction rules do not reverse the above progress. �at is, Rule 5 can decrease the

number of nontrivial connected components or the number of vertices of X incident with a nontrivial

connected component, but at the same time decreases k by one, while Rule 6 cannot delete a nontrivial

connected component.

A�er the application of the described reduction rules, the number of non-trivial components is at

most k and the size of X is at most k(k + 1). �us, the depth of the recursion is bounded by O(k3).

Let C be a component of G−X with |NG(C)| > 2. (It exists as the instance is not bipedal.) For

a subset B ⊆ C and a function f : B → NG(C), we construct an instance If as follows: for every

v ∈ B, we merge v onto the vertex f(v) (we use f(v) as the name of the resulting vertex and the

resulting vertex still belongs to X). We say that B is a sha�ering set if for every f : B → NG(C), the

instance If either contains strictly more nontrivial components than the current instance, or recursing

on If will result in returning an immediate answer by one of the �rst four reduction rules.

�e main technical contribution of Section 5 of [30] is the following statement.

Lemma 3.1. Given an instance (G, T , ω, k,W) together with a set X ⊆ V (G) \ T such that in G−X
there is no path from s to t for any (s, t) ∈ T , and a component C of G−X with |NG(C)| > 2, one can
�nd a sha�ering set B ⊆ C of size at most 3k in polynomial time.

We apply Lemma 3.1 to C , obtaining a set B of size at most 3k. We branch, guessing the �rst of the

following options that happens with regards to a hypothetical solution Z :

1. �ere is a vertex v ∈ B ∩Z . We guess v, delete v from the graph, decrease k by one, decrease W
by ω(v), and recurse. �is gives |B| ≤ 3k subcases and in each subcase k drops.

2. For every v ∈ B, the connected component of G− Z that contains v also contains a vertex of

X . For every v ∈ B, we guess a vertex f(v) ∈ NG(C) that is in the same connected component

of G − Z as v. As |NG(C)| ≤ |X| ≤ k(k + 1) and |B| ≤ 3k, there are 2O(k log k) options for

f : B → NG(C). We recurse on If . To see that we obtain progress, observe that:

• the parameter k stays the same;

• if X is not an independent set, the recursive call returns No immediately;

• otherwise, the fact that B is a sha�ering set implies that in each instance If the number of

non-trivial components increases, while the connectivity of C implies that every vertex of

NG(C) remains adjacent to a nontrivial connected component, so the set of vertices of X
adjacent to a nontrivial connected component does not change.

3. �ere exists v ∈ B such that the connected component of G− Z that contains v is disjoint with

X . Here, [30] branches on an important separator separating v from X . �is does not work in

the presence of weights, so we need to proceed di�erently. We insert v into X , set its weight

to +∞, and recurse. Clearly, the hypothetical solution Z remains a solution and, if the guess is

correct, Z remains a multiway cut (with regards to the enlarged set X). To see that we obtain

progress, observe that:

• the parameter k stays the same;

• if X is not an independent set, the recursive call returns No immediately;

8

• otherwise, �rst observe that in the right guess v has no neighbors in the set X ; therefore,

for every y ∈ NG(C), there exists a connected component Cy of C−{v} with y ∈ NG(Cy)
and as v ∈ NG(Cy) due to connectivity of C , Cy is a new nontrivial component; hence the

number of vertices of X that are incident with a nontrivial connected component increases

as both v and the whole NG(C) are now adjacent to nontrivial connected components;

furthermore, the number of nontrivial connected components does not decrease as at least

one new nontrivial component is created in the place of C since NG(C) 6= ∅.

Hence, the recursive step invokes 2O(k log k) recursive subcalls, in each obtaining the promised

progress. Every single recursive call takes polynomial time. Consequently, the branching algorithm

takes 2O(k
4 log k)nO(1) time and results in 2O(k

4 log k)
leaves of the recursion trees that give either an

immediate answer or a bipedal instance, which is passed to Section 3.2.

3.2 Solving a bipedal instance

We now show how to reduce a bipedal instance to a GDPC instance where every bundle consists of at

most two arcs and a single clause containing the heads of these two arcs. �ese bundles are 2K2-free

and 4-bounded and hence can be solved by �eorem 2.1 in randomized FPT time 2k
O(1)

nO(1). �is is

essentially repeating the arguments of Lemma 7.1 of [18], adjusted for the vertex-deletion se�ing and

GDPC.

We start with a graph H consisting of vertices s and t. For every component C of G−X , proceed

as follows. Recall that |NG(C)| ∈ {1, 2}. Denote one of the elements of NG(C) as sC and the other as

tC , if present. For every v ∈ V (G), create four vertices v+s , v−s , v+t , v−t , arcs (v−s , v
+
s), (v−t , v

+
t), and a

clause v+s v
+
t . �e two constructed arcs and the constructed clause form a bundle Bv of weight ω(v).

�ese are all the bundles that we will construct; all subsequent arcs and clauses will not be in any bundle

and thus will be undeletable. For every connected component C of G −X and uv ∈ E(G[C]), add

arcs (u+s , v
−
s), (v+s , u

−
s) (u+t , v

−
t), and (v+t , u

−
t). For every vsC ∈ E(G) with v ∈ C , add arcs (s, v−s)

and (v+t , t). For every vtC ∈ E(G) with v ∈ C , add arcs (s, v−t) and (v+s , t).

Finally, for every (u, v) ∈ T we proceed as follows. Note that u and v are in distinct connected

components of G−X , say Cu and Cv . For every x ∈ NG(Cu) ∩NG(Cv) we proceed as follows. Say

x = αCu and x = βCv for α, β ∈ {s, t}. Add a clause u−α v
−
β . �is �nishes the description of the GDPC

instance I ′ = (H, s, t, C,B, ω, k,W). It is immediate that the instance satis�es the prerequisities of

�eorem 2.1 with b = 4.

It remains to check the equivalence of the instance I ′ of GDPC with the input instance I =
(G, T , ω, k,W) together with the set X . We do it in the next two lemmata, completing the proof of

�eorem 1.1. Recall T is the set of all terminal vertices.

Lemma 3.2. If Z ⊆ V (G) \ (X ∪ T) is a solution that is also a multiway cut for X , then Z ′ =⋃
v∈Z Bv ∩ E(H) is a cut in I ′ that satis�es all clauses outside Bv for v ∈ Z .

Proof. Assume �rst that H − Z ′ contains a path P ′ from s to t. Observe that there exists a component

C of G −X and α ∈ {s, t} such that all internal vertices of P ′ are of the form v+α or v−α for v ∈ C .

�en, the path P ′ induces a path from sC to tC via C in G− Z , a contradiction to the assumption that

Z is a multiway cut for X .

Assume now that Z ′ violates a clause v+s v
+
t in Bv . �en �rst observe that v ∈ C , for a component

C of G−X . Let P ′s be a path from s to v+s in H − Z ′ and let P ′t be a path from s to v+t in H − Z ′. In

G− Z , the path P ′s yields a path Ps from sC to v and the path P ′t (reversed) yields a path Pt from v to

tC . Together, Ps and Pt yield a path from sC to tC in G− Z , a contradiction to the assumption that Z
is a multiway cut.

Finally, assume that Z ′ violates a clause u−α v
−
β for some (u, v) ∈ T , where Cu and Cv are the

components ofG−X containing u and v, respectively, x ∈ NG(Cu)∩NG(Cv), and x = αCu , x = βCv

9

for α, β ∈ {s, t}. Let P ′u be a path from s to u−α in H −Z ′ and let P ′v be a path from s to v−β in H −Z ′.
In G−Z , P ′u yields a path Pu from u to x = αCu and P ′v yields a path Pv from v to x = βCv . Together,

Pu and Pv yield a path from u to v in G−Z , a contradiction to the assumption that Z is a solution.

Lemma 3.3. If Z ′ is a cut in I ′ that satis�es all clauses that are not in bundles and Z consists of those v
such that Z ′ violates Bv , then Z is a solution to I that is also a multiway cut for X .

Proof. We �rst show that Z is a multiway cut for X . By contradiction, assume that there exists a

component C of G−X and a path P from sC to tC via C that avoids Z . Let v be an arbitrary vertex

of P in C . �en, the pre�x of P from sC to v li�s to a path P ′s in H − Z ′ from s to v+s . Similarly, the

su�x of P from v to tC , reversed, li�s to a path P ′t in H − Z ′ from s to v+t . Hence, Z ′ violates the

clause v+s v
+
t and hence the bundle Bv , which is a contradiction.

Consider now (u, v) ∈ T and assume there is a path P from u to v in G−Z . Since Z is a multiway

cut for X , P contains at most one vertex of X . Since u and v are in distinct connected components

of G −X (say, Cu and Cv , respectively), P contains at least one vertex of X . �at is, P starts in u,

continues via Cu to a vertex x ∈ NG(Cu) ∩NG(Cv), and then continues via Cv to v. �e pre�x of P
from u to x (reversed) li�s to a path P ′u in H − Z ′ from s to u−α where x = αCu , α ∈ {s, t}. �e su�x

of P from x to v li�s to a path P ′v in H −Z ′ from s to v−β where x = βCv , β ∈ {s, t}. Hence, the clause

u−α v
−
β is violated by Z ′, a contradiction. �is �nishes the proof of Lemma 3.3.

With the discussion above, Lemmata 3.2 and 3.3 conclude the proof of �eorem 1.1.

4 Group Feedback Edge/Vertex Set

�is section is devoted to the proof of �eorem 1.3. In fact, we just closely follow the arguments of [9]

and verify that they work also in the weighted se�ing. �e algorithm reduces the problem to multiple

instances of Multiway Cut. Here, in the presence of weights, we apply the algorithm of �eorem 1.1

to solve Weighted Multiway Cut (in particular, we use Corollary 1.2).

As discussed in Section 2, we can focus on the vertex-deletion variant Group Feedback Vertex Set

Using iterative compression (Section 2) we assume that, apart from the input instance (G,ψ, ω, k,W),

we are given a set X ⊆ V (G) of size at most k+ 1 such that G−X has no non-null cycles and the goal

is to �nd a solution disjoint from X . We set ω(x) = +∞ for every x ∈ X . Recall that in this problem

the input graph G is equipped with a group Γ.

For a graph H with group labels ψ, a consistent labeling is a function φ : V (H) → Γ such that

φ(v) = φ(u) + ψ(e, u) for every e = uv ∈ E(H). It is easy to see that (H,ψ) has no non-null cycle if

and only it admits a consistent labeling.

Untangling. By standard relabelling process, we can assume thatψ(e, v) = 0 for every e ∈ E(G−X)
and v ∈ e; we call such an instance untangled. Since G − X has no non-null cycles, there exists

φ : V (G) \X → Γ such that for every e = uv ∈ E(G−X) we have φ(v) = φ(u) +ψ(e, u). For every

e = uv ∈ E(G−X) we relabel ψ(e, u) := φ(u)+ψ(e, u)−φ(v) and ψ(e, v) := φ(v)+ψ(e, v)−φ(u).

Furthermore, for every e = uv ∈ E(G) with u ∈ X but v /∈ X , we relabel ψ(e, u) := ψ(e, u)− φ(v)
and ψ(e, v) = φ(v) + ψ(e, v). It is easy to check that, a�er the above relabeling, for every closed walk

C it does not change whether ψ(C) = 0 or not, while ψ(e, v) = 0 for every e ∈ E(G−X) and v ∈ e.

Extending a labeling of X . We now observe that, given a labeling φ0 : X → Γ, �nding a set

Z ⊆ V (G) \X such that φ0 extends to a consistent labeling of G− Z reduces to Multiway Cut.

Lemma 4.1. �ere exists a randomized FPT algorithm with running time bound 2k
O(1)

nO(1) that, given an
untangled instance (G,ψ, ω, k,W,X) and a function φ0 : X → Γ, checks if there is a set Z ⊆ V (G) \X
of cardinality at most k and weight at mostW such that G− Z admits a consistent labeling extending φ0.

10

Proof. First, we check if for every e = uv ∈ E(G[X]) we indeed have φ0(v) = φ0(u) + ψ(e, u), as

otherwise the answer is No. We construct a Multiway Cut instance as follows. Let T be the set of

those elements g ∈ Γ such that there exists uv ∈ E(G), u ∈ X , v /∈ X , and g = φ0(u) + ψ(uv, u)
(i.e., in a consistent labeling extending φ0, we would need to assign g to v). Note that |T | ≤ |E(G)|.
Let H be the graph consisting of a copy of G −X (with weights inherited), the set T as additional

vertices, and for every uv ∈ E(G), u ∈ X , v /∈ X , an edge from φ0(u) + ψ(uv, u) ∈ T to v. A direct

check shows that it su�ces to solve the obtained Multiway Cut instance (G,T, ω, k,W) and return

the answer (the proof of the equivalence is spelled out in the proof of Lemma 7 in [9]).

Enumerating reasonable labelings of X . Since Γ can be large, we cannot enumerate all labelings

φ0 : X → Γ. In [9], a procedure is presented that enumerates a family of 2O(k log k) labelings such

that, for every solution Z , there is a consistent labeling of G− Z that extends one of the enumerated

labelings.

�e main trick lies in the following reduction step. For v ∈ V (G) \X and x ∈ X , we de�ne a �ow

graph F (v, x) as follows. Let Γx be the set of those g ∈ Γ such that there exists xu ∈ E(G), u /∈ X
and ψ(xu, u) = g. Note that |Γx| ≤ |E(G)|. �e graph F (v, x) consists of a copy of G−X , the set Γx
as additional vertices and, for every xu ∈ E(G) with u /∈ X , an edge uψ(xu, u).

We have the following statement.

Lemma 4.2 (Lemma 8 of [9]). If there are k + 2 paths in F (v, x) from v to distinct elements of Γx that
are vertex-disjoint except for v, then v is contained in every solution of cardinality at most k.

�e condition of Lemma 4.2 can be checked in polynomial time. If such a vertex v is discovered, we

can delete it, decrease k by one, decrease W by ω(v), and repeat the analysis.

Fix x, y ∈ X , x 6= y. An external path from x to y is a path with endpoints x and y and all internal

vertices in G−X ; note that an edge xy is also an external path. Let Γ(x, y) be the set of all elements

g ∈ Γ such that there exists an external path P from x to y with ψ(P) = g. We have also the following

statement.

Lemma 4.3 (Lemma 9 of [9]). If there is no vertex v as in Lemma 4.2, but for some x, y ∈ X , x 6= y we
have |Γ(x, y)| ≥ k3(k + 1)2 + 2, then there is no solution of cardinality at most k.

�e condition of Lemma 4.3 can be again checked in polynomial time and, if we �nd that Γ(x, y) is

too large for some x, y ∈ X , x 6= y, we return No.

Otherwise, we enumerate resonable labelings φ0 : X → Γ as follows. First, we guess how X is

partitioned into connected components of G − Z for a hypothetical solution Z; in every connected

component, we can set φ0 independently. Let Y ⊆ X be a set of vertices guessed to be in the same

connected component ofG−Z ; note that necessarily Y needs to live in the same connected component

of G, so Γ(x, y) 6= ∅ for every distinct x, y ∈ Y . Fix y ∈ Y and set φ0(y) = 0. Note that in a consistent

labeling of G− Z that assigns the value of y to 0, for x ∈ Y \ {y} the value assigned to x needs to be

in Γ(y, x) as a path P from y to x in G− Z has ψ(P) ∈ Γ(y, x). By Lemma 4.3, there are only O(k5)
options for φ0(x). Overall, this gives 2O(k log k) options for φ0, as desired.

�is �nishes the proof of �eorem 1.3.

5 Directed Subset Feedback Edge/Vertex Set

�is section is devoted to the proof of �eorem 1.5. As discussed in Section 2, we can restrict ourselves

to the edge-deletion version, that is, to the Directed Subset Feedback Edge Set problem. Furthermore,

we can assume that red edges are undeletable (of weight +∞): for every e = (u, v) ∈ R, we subdivide

e, replacing it with a path u→ xe → v; the edge (u, xe) becomes red and of weight +∞, and (xe, v) is

not red and inherits the weight of e.

11

Let I = (G,R, ω, k,W) be the input instance. Using iterative compression, we can assume we are

given access to a set X ⊆ V (G) of size at most k + 1 such that G−X has no cycle involving a red

edge.

Let Z ⊆ E(G) \R. Observe that G− Z has no cycle containing a red edge if and only if for every

(u, v) ∈ R, there is no path from v to u in G− Z . �e la�er condition is equivalent to u and v being in

di�erent strong connected components of G− Z . We will use the above reformulations of the desired

separation property interchangably.

Let Z be a sought solution. We start with some branching steps. First, we guess how the vertices

of X are partitioned between strong connected components of G− Z . We identify vertices of X that

are guessed to be in the same connected components of G − Z; note that in the branch where the

guess is correct, this does not change whether two vertices of G− Z are in the same strong connected

component or not. Henceforth, by somewhat abusing the notation, we can assume that the vertices

of X lie in distinct strong connected components of G− Z . We guess the order of X in a topological

ordering of the strong connected components of G − Z; that is, we guess an enumeration of X as

x1, x2, . . . , x|X| such that in G− Z there is no path from xj to xi for 1 ≤ i < j ≤ |X|. Since initially

|X| ≤ k + 1, there are 2O(k log k) branches up to this point and we retain the property |X| ≤ k + 1.

We now construct a GDPC instance I ′. We �rst construct a graph H as follows. We start from

2|X|+ 1 copies of the graph G, denoted Ga for 1 ≤ a ≤ 2|X|+ 1. For u ∈ V (G), let ua be the copy

of u in the graph Ga. For every 1 ≤ a < b ≤ 2|X| + 1 and every u ∈ V (G) we add an arc (ub, ua).

For every red arc (u, v) ∈ R and every 1 ≤ a ≤ |X|, we add an arc (u2a, v2a+1) Finally, we introduce

two new vertices s and t and, for every 1 ≤ a ≤ X and 1 ≤ b ≤ 2|X|+ 1 an arc (s, xba) if 2a ≥ b and

an arc (xba, t) if 2a < b.
For every e = (u, v) ∈ E(G) \R, we make a bundle Be consisting of all 2|X|+ 1 copies of the arc

e. We set ω(Be) = ω(e). �is �nishes the description of a GDPC instance I ′ = (H, s, t, ∅,B, ω, k,W)
with no clauses. See Figure 1.

We observe that the obtained instance has pairwise linked deletable edges, due to the existence of

crisp arcs (ub, ua) for every u ∈ V (G) and 1 ≤ a < b ≤ 2|X|+ 1. Furthermore, every bundle contains

at most 2|X|+ 1 ≤ 2k + 3 deletable edges. �us, by �eorem 2.2, we can resolve it in randomized FPT

time 2O(k
8 log k)nO(1).

It remains to show that the answer to I ′ is actually meaningful. �is is done in the next two lemmata

that complete the proof of �eorem 1.5.

Lemma 5.1. Let Z ⊆ E(G) \R be such thatG−Z has no cycle containing a red edge, and, additionally,

all vertices ofX lie in distinct strong connected components of G−Z and there is no path from xj to xi in
G− Z for every 1 ≤ i < j ≤ |X|. �en Z ′ =

⋃
e∈Z Be is a solution to I ′.

Proof. By contradiction, assume that G− Z ′ contains a path P ′ from s to t. Pick such a path P ′ that

minimizes the number of indices a such that P ′ contains a vertex of Ga. Let a ∈ {1, . . . , 2|X|+ 1} be

the minimum index such that P ′ contains a vertex of Ga and let ua ∈ V (P ′) be the last vertex of P ′ in

Ga. Observe that if (s, xbi) is the �rst edge of P ′, then H also contains crisp edges (s, xb
′
i) for every

1 ≤ b′ ≤ b. Hence, by the minimality of a, we can modify P ′ so that the entire pre�x from s to ua is

contained in Ga: whenever P ′ traverses a vertex va
′
, we instead traverse the vertex va.

Symmetrically, by choosing a to be maximum such that P ′ contains a vertex of Ga and ua ∈ V (P ′)
to be the �rst vertex of P ′ in Ga, we observe that we can replace the su�x of P ′ from ua to t so that it

is completely contained in Ga.

Observe that the only edges ofH that lead fromGa toGb for a < b are edges of the form (u2a, v2a+1)
for 1 ≤ a ≤ |X| and red arcs (u, v). Hence, we can assume that the path P ′ is of one of the following

two types:

1. All internal vertices of P ′ lie in the same graph Ga.

12

st

G1

G2a

G2a+1

G2a+2

G2|X|+1

x1
1 x1

a x1
a+1 x1

|X|−1
x1
|X|u1 v1 w1

x2a
1 x2a

a x2a
a+1 x2a

|X|−1
x2a
|X|u2a v2a w2a

x
2a+1
1

x2a+1
a x

2a+1
a+1

x
2a+1
|X|−1

x
2a+1
|X|u2a+1 v2a+1 w2a+1

x
2a+2
1

x2a+2
a x

2a+2
a+1

x
2a+2
|X|−1

x
2a+2
|X|u2a+2 v2a+2 w2a+2

x
2|X|+1
1 x

2|X|+1
a x

2|X|+1
a+1

x
2|X|+1
|X|−1

x
2|X|+1
|X|u2|X|+1 v2|X|+1 w2|X|+1

Figure 1: Illustration of the reduction of Section 5. All copies of an edge e of G form a bundle Be: here

blue edges form one bundle for an edge (u, v) and magenta edges form another bundle for an edge

(v, w). Furthermore, if (v, w) is red, then there is an extra arc (v2a, w2a+1) for every 1 ≤ a ≤ |X|,
depicted in red. Intutively, this arc, together with arcs (s, x2aa) and (x2a+1

a , t) asks to destroy all closed

walks that pass both through (v, w) and xa.

2. For some 1 ≤ a ≤ |X|, the path P ′ �rst goes from s via G2a
, then uses one edge (u2a, v2a+1) for

some (u, v) ∈ R, and then continues via G2a+1
to t.

In the �rst case, let (s, xaj) be the �rst edge of P ′ and let (xai , t) be the last edge of P ′. By construction

of H , we have 2j ≥ a > 2i, so j > i. �us, P ′ without the �rst and the last edge gives a path in G−Z
from xj to xi for some j > i, a contradiction.

In the second case, let (s, x2aj) be the �rst edge of P ′ and let (x2a+1
i , t) be the last edge of P ′. By

construction of H , we have 2j ≥ 2a and 2a+ 1 > 2i, so j ≥ i. If j > i, P ′ without the �rst and the

last edge gives a path from xj to xi, again a contradiction as in the �rst case. If j = i, then the subpath

of P ′ from v2a+1
to x2a+1

i gives a path from v to xi in G− Z and the subpath of P ′ from x2aj to u2a

gives a path from xj to u in G− Z . As j = i, this gives a path from v to u in G− Z , a contradiction as

(u, v) is a red edge.

13

Lemma 5.2. Let Z ′ be a cut in I ′ and let Z = {e ∈ E(G) \R | Be ∩ Z ′ 6= ∅}. �en G− Z contains no

cycle containing a red edge.

Proof. By contradiction, assumeG−Z contains a path P from v to u for some (u, v) ∈ R. SinceG−X
contains no such path, P contains a vertex of X . Let xi ∈ V (P). Let Pv be the pre�x of P from v to xi
and let Pu be the su�x of P from xi to u. Consider the copy P 2i+1

v of Pv in G2i+1
and the copy P 2i

u of

Pu in G2i
. �en, since Z ′ contains no edge of Be for any e ∈ E(P), P 2i+1

v and P 2i
u are disjoint with

Z ′. �is is a contradiction, as a concatenation of (s, x2ii), P 2i
u , (u2i, v2i+1), P 2i+1

v , and (x2i+1
i , t) is a

path from s to t in H − Z ′.

6 Conclusions

We showed �xed-parameter tractability of a number of weighted graph separation problems. Our �rst

result extends a recent result of Galby et al. [13], who considered the special case of weighted Multicut

in trees. For all our algorithms, we revisited an old combinatorial approach to the problem, adjusted it

to weights, and provided a reduction to GDPC in one of its tractable variants. �e application of the

technique of �ow-augmentation is hidden in the algorithms for GDPC (�eorems 2.1 and 2.2).

We would like to highlight here one graph separation problem that resisted our a�empts: Directed

Symmetric Multicut. Here, the input consists of a directed graph G, weights ω : E(G)→ Z+ (that is,

we consider an edge-deletion variant, but, as we are working with directed graphs, it is straightforward

to reduce between edge- and vertex-deletion variants), integers k and W , and a set T ⊆
(
V (G)
2

)
of

unordered pairs of vertices of G. �e problem asks for an existence of a set Z ⊆ E(G) of size at most k
and total weight at most W such that for every uv ∈ T , the vertices u and v are not in the same strong

connected component of G−Z (i.e., Z cuts all paths from u to v or cuts all paths from v to u). Eiben et

al. [12] considered the parameterized complexity of Directed Symmetric Multicut and gave partial

results, but the main problem of the parameterized complexity of Directed Symmetric Multicut

parameterized by k remains open, even in the unweighted se�ing.

To motivate the Directed Symmetric Multicut problem further, we point out that it has a very

natural reformulation in the context of temporal CSPs, that is, constraint satis�action problems with

domain Q and access to the order on Q. More formally, a temporal CSP relation is an FO formula with

a number of free variables that can be accessed via comparison predicates x = y, x 6= y, x < y, and

x ≤ y. A temporal CSP language is a set of temporal CSP predicates. For a temporal CSP language

Λ, an instance of CSP(Λ) consists of a set of variables X and a set C of constraints; each constraint is

an application of a formula from Λ to a tuple of variables from X . �e goal is to �nd an assignment

α : X → Q that satis�es all constraints. In the Max SAT(Λ) problem, we are additionally given an

integer k and the goal is satisfy all but k constraints (i.e., delete at most k constraints to get a satis�able

instance).

In various CSP contexts, the Max SAT(Λ) problem is usually hard, yet the parameterized complexity

landscape with k as a parameter is o�en rich; see e.g. the recent dichotomy for the Boolean domain [21]

and references therein. �e P vs NP dichotomy for temporal CSP(Λ) is known since over a decade [1].

Can we establish parameterized complexity dichotomy for temporal Max SAT(Λ) parameterized by k?

One of the most prominent examples of a temporal CSP languages is Λ = {x = y, x 6= y, x <
y, x ≤ y}, called a point algebra. Here, CSP(Λ) is known to be polynomial-time solvable. We observe

that Max SAT(Λ) is equivalent to (unweighted) Directed Symmetric Multicut.

In one direction, given an unweighted Directed Symmetric Multicut instance (G, T , k), we

set X = V (G), model every arc (u, v) ∈ E(G) as a constraint u ≤ v and each pair uv ∈ T as k + 1
copies of a constraint u 6= v. Intuitively, a desired assignment α : V (G) → Q maps all vertices of

the same strong connected component to the same number, and otherwise sorts the strong connected

components according to a topological ordering.

14

�e other direction is slightly more involved due to some technicalities. First, we replace each

constraint x = y with a pair of constraints x ≤ y and y ≤ x; note that we will never want to delete

both such constraints. Similarly, we replace each constraint x < y with x 6= y and x ≤ y; again we

will never want to delete both resulting constraints. �us, we can assume that the instance uses only

x 6= y and x ≤ y constraints. �en, for every constraint x 6= y, we introduce fresh copies x′ and y′ of

x and y, introduce constraints x ≤ x′, x′ ≤ x, y ≤ y′, y′ ≤ y, and k + 1 copies of x′ 6= y′, and delete

x 6= y. Now deleting x 6= y is equivalent to deleting one of the inequalities, say x ≤ x′, and se�ing x′

to some very small number di�erent than y and y′. �us, we end up in an instance where only x ≤ y
and x 6= y constraints are present, and the la�er constraints are always undeletable (appear in batches

of k + 1 copies). Now, we can directly model it as Directed Symmetric Multicut: we set V (G) = X ,

for every constraint x ≤ y we add an arc (x, y) and for every batch of k + 1 constraints x 6= y we add

a pair xy to T .

With a very similar reduction we observe that for Λ′ = {x < y, x ≤ y} the problem Max SAT(Λ′) is

equivalent to (unweighted) Directed Subset Feedback Edge Set: every constraint x < y is equivalent

to a red arc (x, y) and every constraint x ≤ y is equivalent to a non-red arc (x, y).

�erefore, the unresolved status of the parameterized complexity of Directed SymmetricMulticut

stands as the main obstacle to obtain a dichotomy for parameterized complexity of Max SAT(Λ) for

temporal CSP languages Λ, parameterized by the deletion budget k.

References
[1] Manuel Bodirsky and Jan Kára. �e complexity of temporal constraint satisfaction problems. J. ACM,

57(2):9:1–9:41, 2010. doi:10.1145/1667053.1667058.

[2] Nicolas Bousquet, Jean Daligault, and Stéphan �omassé. Multicut is FPT. SIAM J. Comput., 47(1):166–207,

2018. doi:10.1137/140961808.

[3] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor Razgon. A �xed-parameter algorithm for

the directed feedback vertex set problem. J. ACM, 55(5), 2008.

[4] Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michal Pilipczuk. De-

signing FPT algorithms for cut problems using randomized contractions. SIAM J. Comput., 45(4):1171–1229,

2016. doi:10.1137/15M1032077.

[5] Rajesh Chitnis, László Egri, and Dániel Marx. ListH-coloring a graph by removing few vertices. Algorithmica,

78(1):110–146, 2017. doi:10.1007/s00453-016-0139-6.

[6] Rajesh Hemant Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, and Dániel Marx. Directed subset

feedback vertex set is �xed-parameter tractable. ACM Trans. Algorithms, 11(4):28:1–28:28, 2015. doi:
10.1145/2700209.

[7] Rajesh Hemant Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-parameter tractability of

directed multiway cut parameterized by the size of the cutset. SIAM J. Comput., 42(4):1674–1696, 2013.

[8] Marek Cygan, Pawel Komosa, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Saket Saurabh,

and Magnus Wahlström. Randomized contractions meet lean decompositions. ACM Trans. Algorithms,

17(1):6:1–6:30, 2021. doi:10.1145/3426738.

[9] Marek Cygan, Marcin Pilipczuk, and Michal Pilipczuk. On group feedback vertex set parameterized by the

size of the cutset. Algorithmica, 74(2):630–642, 2016. doi:10.1007/s00453-014-9966-5.

[10] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. On multiway cut

parameterized above lower bounds. TOCT, 5(1):3, 2013. URL: http://doi.acm.org/10.1145/
2462896.2462899, doi:10.1145/2462896.2462899.

[11] Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Subset feedback vertex

set is �xed-parameter tractable. SIAM J. Discrete Math., 27(1):290–309, 2013. URL: http://dx.doi.
org/10.1137/110843071, doi:10.1137/110843071.

[12] Eduard Eiben, Clément Rambaud, and Magnus Wahlström. On the parameterized complexity of symmetric

directed multicut. In IPEC 2022, 2022. To appear; available at https://arxiv.org/abs/2208.
09017.

15

https://doi.org/10.1145/1667053.1667058
https://doi.org/10.1137/140961808
https://doi.org/10.1137/15M1032077
https://doi.org/10.1007/s00453-016-0139-6
https://doi.org/10.1145/2700209
https://doi.org/10.1145/2700209
https://doi.org/10.1145/3426738
https://doi.org/10.1007/s00453-014-9966-5
http://doi.acm.org/10.1145/2462896.2462899
http://doi.acm.org/10.1145/2462896.2462899
https://doi.org/10.1145/2462896.2462899
http://dx.doi.org/10.1137/110843071
http://dx.doi.org/10.1137/110843071
https://doi.org/10.1137/110843071
https://arxiv.org/abs/2208.09017
https://arxiv.org/abs/2208.09017

[13] Esther Galby, Dániel Marx, Philipp Schepper, Roohani Sharma, and Prafullkumar Tale. Parameterized

complexity of weighted multicut in trees. In WG 2022, 2022.

[14] Sylvain Guillemot. FPT algorithms for path-transversal and cycle-transversal problems. Discrete Optimiza-

tion, 8(1):61–71, 2011.

[15] Meike Hatzel, Lars Ja�e, Paloma T. Lima, Tomás Masarı́k, Marcin Pilipczuk, Roohani Sharma, and Manuel

Sorge. Fixed-parameter tractability of directed multicut with three terminal pairs parameterized by the size

of the cutset: twin-width meets �ow-augmentation. CoRR, abs/2207.07425, 2022. arXiv:2207.07425,

doi:10.48550/arXiv.2207.07425.

[16] Yoichi Iwata, Magnus Wahlström, and Yuichi Yoshida. Half-integrality, lp-branching, and FPT algorithms.

SIAM J. Comput., 45(4):1377–1411, 2016. doi:10.1137/140962838.

[17] Ken-ichi Kawarabayashi and Mikkel �orup. �e minimum k-way cut of bounded size is �xed-parameter

tractable. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations of Computer Science,

FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 160–169. IEEE Computer Society, 2011.

doi:10.1109/FOCS.2011.53.

[18] Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Solving hard cut problems via

�ow-augmentation. CoRR, abs/2007.09018, 2020. URL: https://arxiv.org/abs/2007.09018,

arXiv:2007.09018.

[19] Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Solving hard cut problems via

�ow-augmentation. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete

Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 149–168. SIAM, 2021. doi:
10.1137/1.9781611976465.11.

[20] Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Directed �ow-augmentation. In

Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium on �eory

of Computing, Rome, Italy, June 20 - 24, 2022, pages 938–947. ACM, 2022. doi:10.1145/3519935.
3520018.

[21] Eun Jung Kim, Stefan Kratsch, Marcin Pilipczuk, and Magnus Wahlström. Flow-augmentation III: complexity

dichotomy for boolean csps parameterized by the number of unsatis�ed constraints. CoRR, abs/2207.07422,

2022. arXiv:2207.07422, doi:10.48550/arXiv.2207.07422.

[22] Stefan Kratsch, Marcin Pilipczuk, Michal Pilipczuk, and Magnus Wahlström. Fixed-parameter tractability

of multicut in directed acyclic graphs. SIAM J. Discrete Math., 29(1):122–144, 2015. URL: http://dx.
doi.org/10.1137/120904202, doi:10.1137/120904202.

[23] Stefan Kratsch and Magnus Wahlström. Compression via matroids: A randomized polynomial kernel for

odd cycle transversal. ACM Transactions on Algorithms, 10(4):20, 2014. URL: http://doi.acm.org/
10.1145/2635810, doi:10.1145/2635810.

[24] Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for kernel-

ization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.

[25] Daniel Lokshtanov, M. S. Ramanujan, and Saket Saurabh. When recursion is be�er than iteration: A

linear-time algorithm for acyclicity with few error vertices. In Artur Czumaj, editor, Proceedings of the

Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,

January 7-10, 2018, pages 1916–1933. SIAM, 2018. doi:10.1137/1.9781611975031.125.

[26] Dániel Marx. Parameterized graph separation problems. �eor. Comput. Sci., 351(3):394–406, 2006.

[27] Dániel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators in linear time via treewidth

reduction. ACM Transactions on Algorithms, 9(4):30, 2013. URL: http://doi.acm.org/10.1145/
2500119, doi:10.1145/2500119.

[28] Dániel Marx and Igor Razgon. Constant ratio �xed-parameter approximation of the edge multicut problem.

Inf. Process. Le�., 109(20):1161–1166, 2009. doi:10.1016/j.ipl.2009.07.016.

[29] Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the size of

the cutset. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on

�eory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 469–478. ACM, 2011. doi:
10.1145/1993636.1993699.

[30] Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the size of

the cutset. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on

�eory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 469–478. ACM, 2011. doi:
10.1145/1993636.1993699.

16

http://arxiv.org/abs/2207.07425
https://doi.org/10.48550/arXiv.2207.07425
https://doi.org/10.1137/140962838
https://doi.org/10.1109/FOCS.2011.53
https://arxiv.org/abs/2007.09018
http://arxiv.org/abs/2007.09018
https://doi.org/10.1137/1.9781611976465.11
https://doi.org/10.1137/1.9781611976465.11
https://doi.org/10.1145/3519935.3520018
https://doi.org/10.1145/3519935.3520018
http://arxiv.org/abs/2207.07422
https://doi.org/10.48550/arXiv.2207.07422
http://dx.doi.org/10.1137/120904202
http://dx.doi.org/10.1137/120904202
https://doi.org/10.1137/120904202
http://doi.acm.org/10.1145/2635810
http://doi.acm.org/10.1145/2635810
https://doi.org/10.1145/2635810
https://doi.org/10.1145/3390887
https://doi.org/10.1137/1.9781611975031.125
http://doi.acm.org/10.1145/2500119
http://doi.acm.org/10.1145/2500119
https://doi.org/10.1145/2500119
https://doi.org/10.1016/j.ipl.2009.07.016
https://doi.org/10.1145/1993636.1993699
https://doi.org/10.1145/1993636.1993699
https://doi.org/10.1145/1993636.1993699
https://doi.org/10.1145/1993636.1993699

[31] Dániel Marx and Igor Razgon. Fixed-parameter tractability of multicut parameterized by the size of the

cutset. SIAM J. Comput., 43(2):355–388, 2014. URL: http://dx.doi.org/10.1137/110855247,

doi:10.1137/110855247.

[32] Marcin Pilipczuk and Magnus Wahlström. Directed multicut is W[1]-hard, even for four terminal pairs.

ACM Trans. Comput. �eory, 10(3):13:1–13:18, 2018. doi:10.1145/3201775.

[33] Igor Razgon and Barry O’Sullivan. Almost 2-SAT is �xed-parameter tractable. J. Comput. Syst. Sci.,

75(8):435–450, 2009.

[34] Bruce A. Reed, Kaleigh Smith, and Adrian Ve�a. Finding odd cycle transversals. Oper. Res. Le�., 32(4):299–301,

2004. doi:10.1016/j.orl.2003.10.009.

[35] Saket Saurabh. What’s next? future directions in parameterized complexity, 2017. Recent Advances in

Parameterized Complexity school, Tel Aviv, December 2017. URL: https://rapctelaviv.weebly.
com/uploads/1/0/5/3/105379375/future.pdf.

17

http://dx.doi.org/10.1137/110855247
https://doi.org/10.1137/110855247
https://doi.org/10.1145/3201775
https://doi.org/10.1016/j.orl.2003.10.009
https://rapctelaviv.weebly.com/uploads/1/0/5/3/105379375/future.pdf
https://rapctelaviv.weebly.com/uploads/1/0/5/3/105379375/future.pdf

	1 Introduction
	2 Preliminaries
	2.1 Edge- and vertex-deletion variants
	2.2 Iterative Compression
	2.3 Generalized Digraph Pair Cut

	3 Multicut
	3.1 Branching on a multilegged component
	3.2 Solving a bipedal instance

	4 Group Feedback Edge/Vertex Set
	5 Directed Subset Feedback Edge/Vertex Set
	6 Conclusions

