1,172 research outputs found

    Domain Wall Resistance in Perpendicular (Ga,Mn)As: dependence on pinning

    Full text link
    We have investigated the domain wall resistance for two types of domain walls in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive intrinsic DWR is inferred for domain walls that are pinned at an etching step, which is quite consistent with earlier observations. However, much lower intrinsic domain wall resistance is obtained when domain walls are formed by pinning lines in unetched material. This indicates that the spin transport across a domain wall is strongly influenced by the nature of the pinning.Comment: 9 pages, 3 figure

    How do we get people into contact? Predictors of intergroup contact and drivers of contact seeking

    Get PDF
    Compared to the impressive amount of research on consequences of intergroup contact, relatively little work has been devoted to predictors of intergroup contact. Although opportunities for intergroup contact are constantly growing in modern diverse societies, these contact opportunities are not necessarily exploited. In the present review article, we describe current research on predictors of intergroup contact and drivers of contact seeking on a micro‐, meso‐, and macro‐level. We provide an overview of predictors, while focusing on recent research that is especially relevant for designing interventions and planning social policies aiming at increasing contact between different groups in varied societies. On the micro‐level, we discuss relational self‐expansion motives and confidence in contact as predictors of intergroup contact. On the meso‐level, we focus on the role of intragroup processes and historical intergroup conflicts in facilitating contact. On the macro‐level, we reflect on changing societal norms as a potential tool to increase the frequency intergroup contact. By focusing on the applied value of research findings, discussing diverse predictors, and applying a multilevel approach, we also address recent criticisms of the intergroup contact literature and demonstrate the generative nature of contemporary research in this area

    Relationship between incommensurability and superconductivity in Peierls distorted charge-density-wave systems

    Full text link
    We study the pairing potential induced by fluctuations around a charge-density wave (CDW) with scattering vector Q by means of the Froehlich transformation. For general commensurability M, defined as |k+M*Q>=|k>, we find that the intraband pair scattering within the M subbands scales with M whereas the interband pair scattering becomes suppressed with increasing CDW order parameter. As a consequence superconductivity is suppressed when the Fermi energy is located between the subbands as it is usually the case for nesting induced CDW's, but due to the vertex renormalization it can be substantially enhanced when the chemical potential is shifted sufficiently inside one of the subbands. The model can help to understand the experimentally observed dependence of the superconducting transition temperature from the stripe phase incommensurability in the lanthanum cuprates.Comment: 6 pages, 3 figure

    Possible Dibaryons with Strangeness s=-5

    Get PDF
    In the framework of RGMRGM, the binding energy of the six quark system with strangeness s=-5 is systematically investigated under the SU(3) chiral constituent quark model. The single Ξ∗Ω\Xi^*\Omega channel calculation with spins S=0 and 3 and the coupled ΞΩ\Xi\Omega and Ξ∗Ω\Xi^*\Omega channel calculation with spins S=1 and 2 are considered, respectively. The results show following observations: In the spin=0 case, Ξ∗Ω\Xi^* \Omega is a bound dibaryon with the binding energy being 80.0∌92.4MeV80.0 \sim 92.4 MeV. In the S=1 case, ΞΩ\Xi\Omega is also a bound dibaryon. Its binding energy is ranged from 26.2MeV26.2 MeV to 32.9MeV32.9 MeV. In the S=2 and S=3 cases, no evidence of bound dibaryons are found. The phase shifts and scattering lengths in the S=0 and S=1 cases are also given.Comment: 10 pages, late

    Charge Transport Through Open, Driven Two-Level Systems with Dissipation

    Full text link
    We derive a Floquet-like formalism to calculate the stationary average current through an AC driven double quantum dot in presence of dissipation. The method allows us to take into account arbitrary coupling strengths both of a time-dependent field and a bosonic environment. We numerical evaluate a truncation scheme and compare with analytical, perturbative results such as the Tien-Gordon formula.Comment: 14 pages, 6 figures. To appear in Phys. Rev.

    A measurement of the axial form factor of the nucleon by the p(e,e'pi+)n reaction at W=1125 MeV

    Full text link
    The reaction p(e,e'pi+)n was measured at the Mainz Microtron MAMI at an invariant mass of W=1125 MeV and four-momentum transfers of Q^2=0.117, 0.195 and 0.273 (GeV/c)^2. For each value of Q^2, a Rosenbluth separation of the transverse and longitudinal cross sections was performed. An effective Lagrangian model was used to extract the `axial mass' from experimental data. We find a value of M_A=(1.077+-0.039) GeV which is (0.051+-0.044) GeV larger than the axial mass known from neutrino scattering experiments. This is consistent with recent calculations in chiral perturbation theory.Comment: 14 pages, 5 figures, uses elsart.cl

    Neutrino Interferometry In Curved Spacetime

    Get PDF
    Gravitational lensing introduces the possibility of multiple (macroscopic) paths from an astrophysical neutrino source to a detector. Such a multiplicity of paths can allow for quantum mechanical interference to take place that is qualitatively different to neutrino oscillations in flat space. After an illustrative example clarifying some under-appreciated subtleties of the phase calculation, we derive the form of the quantum mechanical phase for a neutrino mass eigenstate propagating non-radially through a Schwarzschild metric. We subsequently determine the form of the interference pattern seen at a detector. We show that the neutrino signal from a supernova could exhibit the interference effects we discuss were it lensed by an object in a suitable mass range. We finally conclude, however, that -- given current neutrino detector technology -- the probability of such lensing occurring for a (neutrino-detectable) supernova is tiny in the immediate future.Comment: 25 pages, 1 .eps figure. Updated version -- with simplified notation -- accepted for publication in Phys.Rev.D. Extra author adde

    Gravitational stability and dynamical overheating of stellar disks of galaxies

    Full text link
    We use the marginal stability condition for galactic disks and the stellar velocity dispersion data published by different authors to place upper limits on the disk local surface density at two radial scalelengths R=2hR=2h. Extrapolating these estimates, we constrain the total mass of the disks and compare these estimates to those based on the photometry and color of stellar populations. The comparison reveals that the stellar disks of most of spiral galaxies in our sample cannot be substantially overheated and are therefore unlikely to have experienced a significant merging event in their history. The same conclusion applies to some, but not all of the S0 galaxies we consider. However, a substantial part of the early type galaxies do show the stellar velocity dispersion well in excess of the gravitational stability threshold suggesting a major merger event in the past. We find dynamically overheated disks among both seemingly isolated galaxies and those forming pairs. The ratio of the marginal stability disk mass estimate to the total galaxy mass within four radial scalelengths remains within a range of 0.4---0.8. We see no evidence for a noticeable running of this ratio with either the morphological type or color index.Comment: 25 pages, 5 figures, accepted to Astronomy Letter

    The Effects of Media and their Logic on Legitimacy Sources within Local Governance Networks: A Three-Case Comparative Study

    Get PDF
    __Abstract__ Although theoretical and empirical work on the democratic legitimacy of governance networks is growing, little attention has been paid to the impact of mediatisation on democracies. Media have their own logic of news-making led by the media’s rules, aims, production routines and constraints, which affect political decision-making processes. In this article, we specifically study how media and their logic affect three democratic legitimacy sources of political decision-making within governance networks: voice, due deliberation and accountability. We conducted a comparative case study of three local governance networks using a mixed method design, combining extensive qualitative case studies, interviews and a quantitative content analysis of media reports. In all three cases, media logic increased voice possibilities for citizen groups. Furthermore, it broadened the deliberation process, although this did not improve the quality of this process per se, because the media focus on drama and negativity. Finally, media logic often pushed political authorities into a reactive communication style as they had to fight against negative images in the media. Proactive communication about projects, such as public relation (PR) strategies and branding, is difficult in such a media landscape

    Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope

    Full text link
    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo, minor revisions to be consistent with accepted versio
    • 

    corecore