We study the pairing potential induced by fluctuations around a
charge-density wave (CDW) with scattering vector Q by means of the Froehlich
transformation. For general commensurability M, defined as |k+M*Q>=|k>, we find
that the intraband pair scattering within the M subbands scales with M whereas
the interband pair scattering becomes suppressed with increasing CDW order
parameter. As a consequence superconductivity is suppressed when the Fermi
energy is located between the subbands as it is usually the case for nesting
induced CDW's, but due to the vertex renormalization it can be substantially
enhanced when the chemical potential is shifted sufficiently inside one of the
subbands. The model can help to understand the experimentally observed
dependence of the superconducting transition temperature from the stripe phase
incommensurability in the lanthanum cuprates.Comment: 6 pages, 3 figure