research

Relationship between incommensurability and superconductivity in Peierls distorted charge-density-wave systems

Abstract

We study the pairing potential induced by fluctuations around a charge-density wave (CDW) with scattering vector Q by means of the Froehlich transformation. For general commensurability M, defined as |k+M*Q>=|k>, we find that the intraband pair scattering within the M subbands scales with M whereas the interband pair scattering becomes suppressed with increasing CDW order parameter. As a consequence superconductivity is suppressed when the Fermi energy is located between the subbands as it is usually the case for nesting induced CDW's, but due to the vertex renormalization it can be substantially enhanced when the chemical potential is shifted sufficiently inside one of the subbands. The model can help to understand the experimentally observed dependence of the superconducting transition temperature from the stripe phase incommensurability in the lanthanum cuprates.Comment: 6 pages, 3 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020