98 research outputs found

    How much does effective health facility inspection cost? An analysis of the economic costs of Kenya's Joint Health Inspection innovations.

    Get PDF
    BACKGROUND: In most low- and middle-income countries, health facility regulation is fragmented, ineffective and under-resourced. The Kenyan Government piloted an innovative regulatory regime involving Joint Health Inspections (JHI) which synthesized requirements across multiple regulatory agencies; increased inspection frequency; digitized inspection tools; and introduced public display of regulatory results. The pilot significantly improved regulatory compliance. We calculated the costs of the development and implementation of the JHI pilot and modelled the costs of national scale-up in Kenya. METHODS: We calculated the economic costs of three phases: JHI checklist development, start-up activities, and first year of implementation, from the providers' perspective in three pilot counties. Data collection involved extraction from expenditure records and key informant interviews. The annualized costs of JHI were calculated by adding annualized development and start-up costs to annual implementation costs. National level scale-up costs were also modelled and compared to those of current standard inspections. RESULTS: The total economic cost of the JHI pilot was USD 1,125,600 (2017 USD), with the development phase accounting for 19%, start-up 43% and the first year of implementation 38%. The annualized economic cost was USD 519,287, equivalent to USD 206 per health facility visit and USD 311 per inspection completed. Scale up to the national level, while replacing international advisors with local staff, was estimated to cost approximately USD 4,823,728, equivalent to USD 103 per health facility visit and USD 155 per inspection completed. This compares to an estimated USD 86,997 per year (USD 113 per inspection completed) spent on a limited number of inspections prior to JHI. CONCLUSION: Information on costs is essential to consider affordability and value for money of regulatory interventions. This is the first study we are aware of costing health facility inspections in sub-Saharan Africa. It has informed debates on appropriate inspection design and potential efficiency gains. It will also serve as an important benchmark for future studies, and a key input into cost-effectiveness analyses

    What Lies Behind Successful Regulation? A Qualitative Evaluation of Pilot Implementation of Kenya's Health Facility Inspection Reforms.

    Get PDF
    BACKGROUND: Health facility regulation in low- and middle-income countries (LMICs) is generally weak, with potentially serious consequences for safety and quality. Innovative regulatory reforms were piloted in three Kenyan counties including: a Joint Health Inspection Checklist (JHIC) synthesizing requirements across multiple regulatory agencies; increased inspection frequency; allocating facilities to compliance categories which determined warnings, sanctions and/or time to re-inspection; and public display of regulatory results. The reforms substantially increased inspection scores compared with control facilities. We developed lessons for future regulatory policy from this pilot by identifying key factors that facilitated or hindered its implementation. METHODS: We conducted a qualitative study to understand views and experiences of actors involved in the one-year pilot. We interviewed 77 purposively selected staff from the national, county and facility levels. Data were analyzed using the framework approach, identifying facilitating/hindering factors at the facility, inspection system, and health system levels. RESULTS: The joint health inspections (JHIs) were generally viewed as fair, objective and transparent, which enhanced their perceived legitimacy. Interactions with inspectors were described as friendly and supportive, in contrast to the punitive culture of previous inspections when bribery had been common. Inspector training and use of an electronic checklist were strongly praised. However, practical challenges with transport, route planning and budgets highlighted the critical nature of strong logistical management. The effectiveness of inspection in improving compliance was hampered by limitations in related systems, particularly facility licensing, enforcement of closures and, in the public sector, control of funds. However, an inclusive reform development process had led to high buy-in across regulatory agencies which was key to the system's success. CONCLUSION: Effective facility inspection involves more than "hardware" such as checklists, protocols and training. Cultural, relational and institutional "software" are also crucial for legitimacy, feasibility of implementation and enforceability, and should be carefully integrated into regulatory reforms

    A genome triplication associated with early diversification of the core eudicots

    Get PDF
    Background: Although it is agreed that a major polyploidy event, gamma, occurred within the eudicots, the phylogenetic placement of the event remains unclear. Results: To determine when this polyploidization occurred relative to speciation events in angiosperm history, we employed a phylogenomic approach to investigate the timing of gene set duplications located on syntenic gamma blocks. We populated 769 putative gene families with large sets of homologs obtained from public transcriptomes of basal angiosperms, magnoliids, asterids, and more than 91.8 gigabases of new next-generation transcriptome sequences of non-grass monocots and basal eudicots. The overwhelming majority (95%) of well-resolved gamma duplications was placed before the separation of rosids and asterids and after the split of monocots and eudicots, providing strong evidence that the gamma polyploidy event occurred early in eudicot evolution. Further, the majority of gene duplications was placed after the divergence of the Ranunculales and core eudicots, indicating that the gamma appears to be restricted to core eudicots. Molecular dating estimates indicate that the duplication events were intensely concentrated around 117 million years ago. Conclusions: The rapid radiation of core eudicot lineages that gave rise to nearly 75% of angiosperm species appears to have occurred coincidentally or shortly following the gamma triplication event. Reconciliation of gene trees with a species phylogeny can elucidate the timing of major events in genome evolution, even when genome sequences are only available for a subset of species represented in the gene trees. Comprehensive transcriptome datasets are valuable complements to genome sequences for high-resolution phylogenomic analysis

    Data access for the 1,000 Plants (1KP) project

    Get PDF
    © 2014 Matasci et al.; licensee BioMed Central Ltd. The 1,000 plants (1KP) project is an international multi-disciplinary consortium that has generated transcriptome data from over 1,000 plant species, with exemplars for all of the major lineages across the Viridiplantae (green plants) clade. Here, we describe how to access the data used in a phylogenomics analysis of the first 85 species, and how to visualize our gene and species trees. Users can develop computational pipelines to analyse these data, in conjunction with data of their own that they can upload. Computationally estimated protein-protein interactions and biochemical pathways can be visualized at another site. Finally, we comment on our future plans and how they fit within this scalable system for the dissemination, visualization, and analysis of large multi-species data sets

    Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression

    Get PDF
    Abstract Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions

    Parasitic Plants Striga and Phelipanche Dependent upon Exogenous Strigolactones for Germination Have Retained Genes for Strigolactone Biosynthesis

    Get PDF
    Abstract Strigolactones are plant hormones with multiple functions, including regulating various aspects of plant architecture such as shoot branching, facilitating the colonization of plant roots by arbuscular mycorrhizal fungi, and acting as seed germination stimulants for certain parasitic plants of the family Orobanchaceae. The obligate parasitic species Phelipanche aegyptiaca and Striga hermonthica require strigolactones for germination, while the facultative parasite Triphysaria versicolor does not. It has been hypothesized that P. aegyptiaca and S. hermonthica would have undergone evolutionary loss of strigolactone biosynthesis as a part of their mechanism to enable specific detection of exogenous strigolactones. We analyzed the transcriptomes of P. aegyptiaca, S. hermonthica and T. versicolor and identified genes known to act in strigolactone synthesis (D27, CCD7, CCD8, and MAX1), perception (MAX2 and D14) and transport (PDR12). These genes were then analyzed to assess likelihood of function. Transcripts of all strigolactone-related genes were found M. Das et al. 1152 in P. aegyptiaca and S. hermonthica, and evidence points to their encoding functional proteins. Gene open reading frames were consistent with homologs from Arabidopsis and other strigolactone-producing plants, and all genes were expressed in parasite tissues. In general, the genes related to strigolactone synthesis and perception appeared to be evolving under codon-based selective constraints in strigolactone-dependent species. Bioassays of S. hermonthica root extracts indicated the presence of strigolactone class stimulants on germination of P. aegyptiaca seeds. Taken together, these results indicate that Phelipanche aegyptiaca and S. hermonthica have retained functional genes involved in strigolactone biosynthesis, suggesting that the parasites use both endogenous and exogenous strigolactones and have mechanisms to differentiate the two

    Phylotranscriptomic analysis of the origin and early diversification of land plants

    Get PDF
    Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances inmolecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the datamatrix or to phylogeneticmethod, including supermatrix, supertree, and coalescent-based approaches, maximumlikelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated

    Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism

    Get PDF
    Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies.Peer reviewe
    corecore