55 research outputs found

    Defining Optimal Brain Health in Adults A Presidential Advisory From the American Heart Association/American Stroke Association

    Get PDF
    Cognitive function is an important component of aging and predicts quality of life, functional independence, and risk of institutionalization. Advances in our understanding of the role of cardiovascular risks have shown them to be closely associated with cognitive impairment and dementia. Because many cardiovascular risks are modifiable, it may be possible to maintain brain health and to prevent dementia in later life. The purpose of this American Heart Association (AHA)/American Stroke Association presidential advisory is to provide an initial definition of optimal brain health in adults and guidance on how to maintain brain health. We identify metrics to define optimal brain health in adults based on inclusion of factors that could be measured, monitored, and modified. From these practical considerations, we identified 7 metrics to define optimal brain health in adults that originated from AHA's Life's Simple 7: 4 ideal health behaviors (nonsmoking, physical activity at goal levels, healthy diet consistent with current guideline levels, and body mass index < 25 kg/m(2)) and 3 ideal health factors (untreated blood pressure < 120/< 80 mm Hg, untreated total cholesterol < 200 mg/dL, and fasting blood glucose < 100 mg/dL). In addition, in relation to maintenance of cognitive health, we recommend following previously published guidance from the AHA/American Stroke Association, Institute of Medicine, and Alzheimer's Association that incorporates control of cardiovascular risks and suggest social engagement and other related strategies. We define optimal brain health but recognize that the truly ideal circumstance may be uncommon because there is a continuum of brain health as demonstrated by AHA's Life's Simple 7. Therefore, there is opportunity to improve brain health through primordial prevention and other interventions. Furthermore, although cardiovascular risks align well with brain health, we acknowledge that other factors differing from those related to cardiovascular health may drive cognitive health. Defining optimal brain health in adults and its maintenance is consistent with the AHA's Strategic Impact Goal to improve cardiovascular health of all Americans by 20% and to reduce deaths resulting from cardiovascular disease and stroke by 20% by the year 2020. This work in defining optimal brain health in adults serves to provide the AHA/American Stroke Association with a foundation for a new strategic direction going forward in cardiovascular health promotion and disease prevention

    Racial-Ethnic Disparities in Acute Stroke Care in the Florida-Puerto Rico Collaboration to Reduce Stroke Disparities Study

    Get PDF
    Background-Racial-ethnic disparities in acute stroke care can contribute to inequality in stroke outcomes. We examined raceethnic disparities in acute stroke performance metrics in a voluntary stroke registry among Florida and Puerto Rico Get With the Guidelines-Stroke hospitals. Methods and Results-Seventy-five sites in the Florida Puerto Rico Stroke Registry (66 Florida and 9 Puerto Rico) recorded 58 864 ischemic stroke cases (2010-2014). Logistic regression models examined racial-ethnic differences in acute stroke performance measures and defect-free care (intravenous tissue plasminogen activator treatment, in-hospital antithrombotic therapy, deep vein thrombosis prophylaxis, discharge antithrombotic therapy, appropriate anticoagulation therapy, statin use, smoking cessation counseling) and temporal trends. Among ischemic stroke cases, 63% were non-Hispanic white (NHW), 18% were non-Hispanic black (NHB), 14% were Hispanic living in Florida, and 6% were Hispanic living in Puerto Rico. NHW patients were the oldest, followed by Hispanics, and NHBs. Defect-free care was greatest among NHBs (81%), followed by NHWs (79%) and Florida Hispanics (79%), then Puerto Rico Hispanics (57%) (P \u3c 0.0001). Puerto Rico Hispanics were less likely than Florida whites to meet any stroke care performance metric other than anticoagulation. Defect-free care improved for all groups during 2010-2014, but the disparity in Puerto Rico persisted (2010: NHWs=63%, NHBs=65%, Florida Hispanics=59%, Puerto Rico Hispanics=31%; 2014: NHWs=93%, NHBs=94%, Florida Hispanics=94%, Puerto Rico Hispanics=63%). Conclusions-Racial-ethnic/geographic disparities were observed for acute stroke care performance metrics. Adoption of a quality improvement program improved stroke care from 2010 to 2014 in Puerto Rico and all Florida racial-ethnic groups. However, stroke care quality delivered in Puerto Rico is lower than in Florida. Sustained support of evidence-based acute stroke quality improvement programs is required to improve stroke care and minimize racial-ethnic disparities, particularly in resource-strained Puerto Rico

    Decentralized clinical trials in the trial innovation network: Value, strategies, and lessons learned

    Get PDF
    New technologies and disruptions related to Coronavirus disease-2019 have led to expansion of decentralized approaches to clinical trials. Remote tools and methods hold promise for increasing trial efficiency and reducing burdens and barriers by facilitating participation outside of traditional clinical settings and taking studies directly to participants. The Trial Innovation Network, established in 2016 by the National Center for Advancing Clinical and Translational Science to address critical roadblocks in clinical research and accelerate the translational research process, has consulted on over 400 research study proposals to date. Its recommendations for decentralized approaches have included eConsent, participant-informed study design, remote intervention, study task reminders, social media recruitment, and return of results for participants. Some clinical trial elements have worked well when decentralized, while others, including remote recruitment and patient monitoring, need further refinement and assessment to determine their value. Partially decentralized, or “hybrid” trials, offer a first step to optimizing remote methods. Decentralized processes demonstrate potential to improve urban-rural diversity, but their impact on inclusion of racially and ethnically marginalized populations requires further study. To optimize inclusive participation in decentralized clinical trials, efforts must be made to build trust among marginalized communities, and to ensure access to remote technology

    Genetic Variants in CETP Increase Risk of Intracerebral Hemorrhage

    Get PDF
    OBJECTIVE: In observational epidemiologic studies, higher plasma high-density lipoprotein cholesterol (HDL-C) has been associated with increased risk of intracerebral hemorrhage (ICH). DNA sequence variants that decrease cholesteryl ester transfer protein (CETP) gene activity increase plasma HDL-C; as such, medicines that inhibit CETP and raise HDL-C are in clinical development. Here, we test the hypothesis that CETP DNA sequence variants associated with higher HDL-C also increase risk for ICH.METHODS: We performed 2 candidate-gene analyses of CETP. First, we tested individual CETP variants in a discovery cohort of 1,149 ICH cases and 1,238 controls from 3 studies, followed by replication in 1,625 cases and 1,845 controls from 5 studies. Second, we constructed a genetic risk score comprised of 7 independent variants at the CETP locus and tested this score for association with HDL-C as well as ICH risk.RESULTS: Twelve variants within CETP demonstrated nominal association with ICH, with the strongest association at the rs173539 locus (odds ratio [OR] = 1.25, standard error [SE] = 0.06, p = 6.0 × 10(-4) ) with no heterogeneity across studies (I(2) = 0%). This association was replicated in patients of European ancestry (p = 0.03). A genetic score of CETP variants found to increase HDL-C by ∼2.85mg/dl in the Global Lipids Genetics Consortium was strongly associated with ICH risk (OR = 1.86, SE = 0.13, p = 1.39 × 10(-6) ).INTERPRETATION: Genetic variants in CETP associated with increased HDL-C raise the risk of ICH. Given ongoing therapeutic development in CETP inhibition and other HDL-raising strategies, further exploration of potential adverse cerebrovascular outcomes may be warranted. Ann Neurol 2016;80:730-740

    Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes

    Get PDF
    AbstractObjectiveWe sought to assess whether genetic risk factors for atrial fibrillation can explain cardioembolic stroke risk.MethodsWe evaluated genetic correlations between a prior genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously-validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors.ResultsWe observed strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson’s r=0.77 and 0.76, respectively, across SNPs with p &lt; 4.4 × 10−4 in the prior AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio (OR) per standard deviation (sd) = 1.40, p = 1.45×10−48), explaining ∼20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per sd = 1.07, p = 0.004), but no other primary stroke subtypes (all p &gt; 0.1).ConclusionsGenetic risk for AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.</jats:sec

    Examining Barriers and Practices to Recruitment and Retention in Stroke Clinical Trials

    No full text
    BACKGROUND AND PURPOSE: The National Institutes of Health policy calls for the inclusion of under-represented groups, such as women and minorities, in clinical research. Poor minority recruitment and retention in stroke clinical trials remain a significant challenge limiting safety and efficacy in a general population. Previous research examines participant barriers to clinical trial involvement, but little is known about the investigator perspective. This study addresses this gap and examines researcher-reported barriers and best practices of minority involvement in stroke clinical trials. METHODS: Quantitative and qualitative methods, including surveys, focus groups, and key informant interviews were used. RESULTS: In a survey of 93 prominent stroke researchers, 43 (51.2%; 70% response rate) respondents reported proactively setting recruitment goals for minority inclusion, 29 respondents (36.3%) reported requiring cultural competency staff training, and 44 respondents (51.2%) reported using community consultation about trial design. Focus groups and key informant interviews highlighted structural and institutional challenges to recruitment of minorities, including mistrust of the research/medical enterprise, poor communication, and lack of understanding of clinical trials. Researcher-identified best practices included using standardized project management procedures and protocols (eg, realistic budgeting to support challenges in recruitment, such as travel/parking reimbursement for participants), research staff cultural competency and communication training, and developing and fostering community partnerships that guide the research process. CONCLUSIONS: This studys formative evaluation contributes a new dimension to the literature as it highlights researcher-reported barriers and best practices for enhancing participation of minority populations into stroke clinical trials
    corecore