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Abstract  

Increasing emphasis on the use of real-world evidence (RWE) to support clinical policy and 

regulatory decision-making has led to a proliferation of guidance, advice, and frameworks from 

regulatory agencies, academia, professional societies, and industry. A broad spectrum of studies 

use real-world data (RWD) to produce RWE, ranging from randomized trials with outcomes 

assessed using RWD to fully observational studies. Yet, many proposals for generating RWE 

lack sufficient detail, and many analyses of RWD suffer from implausible assumptions, other 

methodological flaws, or inappropriate interpretations. The Causal Roadmap is an explicit, 

itemized, iterative process that guides investigators to pre-specify study design and analysis 

plans; it addresses a wide range of guidance within a single framework. By supporting the 

transparent evaluation of causal assumptions and facilitating objective comparisons of design 

and analysis choices based on pre-specified criteria, the Roadmap can help investigators to 

evaluate the quality of evidence that a given study is likely to produce, specify a study to 

generate high-quality RWE, and communicate effectively with regulatory agencies and other 

stakeholders. This paper aims to disseminate and extend the Causal Roadmap framework for use 

by clinical and translational researchers; three companion papers demonstrate applications of the 

Causal Roadmap for specific use cases. 
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Introduction 

The 21st century has witnessed a dramatic increase in the quality, diversity, and availability of 

real-world data (RWD) such as electronic health records, health insurance claims, and registry 

data [1]. In 2016, as part of a strategy to improve the efficiency of medical product development, 

the United States Congress passed the 21st Century Cures Act [2] that mandated the 

development of United States Food and Drug Administration (FDA) guidance on potential 

regulatory uses of real-world evidence (RWE) – defined as “clinical evidence about the usage 

and potential benefits or risks of a medical product derived from analysis of RWD” [3]. 

Internationally, stakeholders including other regulatory agencies, industry, payers, academia, and 

patient groups have also increasingly endorsed the use of RWE to support regulatory decisions 

[4,5]. Study designs that use RWD to generate RWE (referred to below as RWE studies) include 

pragmatic clinical trials, externally controlled trials or hybrid randomized-external data studies, 

and fully observational studies [6–8]. 

 

There are multiple motivations for using RWD in a study. First, RWD has long been used in 

post-market safety surveillance to uncover the presence of rare adverse events not adequately 

evaluated by phase III randomized controlled trials for reasons including strict eligibility criteria, 

strict treatment protocols, limited patient numbers, and limited time on treatment and in follow-

up [9]. Second, recent drug development efforts have more commonly targeted rare diseases or 

conditions without effective treatments [10]. RWD can be useful in such contexts when it is not 

practical to randomize enough participants to power a standard randomized trial or when there is 

an ethical imperative to minimize the number of patients assigned to the trial control arm 

[11,12]. RWD was also highly valuable during the COVID-19 pandemic; observational studies 

reported timely evidence on vaccine booster effectiveness [13,14], the comparative effectiveness 

of different vaccines [15], and vaccine effectiveness during pregnancy [16]. 

 

Despite the many ways in which RWE may support policy or regulatory decision-making, the 

prospect of erroneous conclusions resulting from potentially biased effect estimates has led to 

appropriate caution when interpreting the results of RWE studies. One concern is data 

availability; data sources might not include all relevant information for causal estimation even in 

randomized studies that generate RWE. Another concern is lack of randomized treatment 
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allocation in observational RWE. These issues create challenges for estimating a causal 

relationship outside of the “traditional” clinical trial space.  

 

In an attempt to guide investigators towards better practices for RWE studies, there has been a 

proliferation of guidance documents and framework proposals from regulatory agencies, 

academia, and industry addressing different stages of the process of RWE generation [3,5,17–

23]. Yet incoming submissions to regulatory agencies lack standardization and consistent 

inclusion of all information that is relevant for evaluating the quality of evidence that may be 

produced by a given RWE study [20].  To address this gap between guidance and 

implementation and to discuss perspectives from regulatory and federal medical research 

agencies, industry, academia, trialists, methodologists, and software developers, the Forum on 

the Integration of Observational and Randomized Data (FIORD) meeting was held in 

Washington, D.C. November 17-18, 2022. FIORD participants discussed their experiences with 

RWE guidance and best practices, as well as steps that could be taken to help investigators 

follow available guidance. Specifically, participants determined the need for a unifying structure 

to assist with specification of key elements of a design and analysis plan for an RWE study, 

including both the statistical analysis plan and additional design elements relevant for optimizing 

and evaluating the quality of evidence produced. 

 

The Causal Roadmap [24–30] (hereafter, the Roadmap) addresses this need because it is a 

general, adaptable framework for causal and statistical inference that is applicable to all studies 

that generate RWE, including studies with randomized treatment allocation and prospective and 

retrospective observational designs. It is consistent with existing guidance and makes key steps 

necessary for pre-specifying RWE study design and analysis plans explicit. The Roadmap 

includes steps of defining a study question and the target of estimation, defining the processes 

that generate data to answer that question, articulating the assumptions required to give results a 

causal interpretation, selecting appropriate statistical analyses, and pre-specifying sensitivity 

analyses. Following the Roadmap may lead to either 1) specification of key elements of a study 

design and analysis plan that is expected to generate high-quality RWE; or, 2) an evidence-based 

decision that an RWE study to generate the required level of evidence is not currently feasible, 

with insights into what data would be needed to generate credible RWE in the future.  
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The goal of this paper is to disseminate the Causal Roadmap to an audience of clinical and 

translational researchers. We provide an overview of the Roadmap, including a list of steps to 

consider when proposing studies that incorporate RWD. Members of the FIORD Working 

Groups also provide three case studies as companion papers demonstrating application of the 

Roadmap, as described in Table 1.  

 

Overview of the Causal Roadmap for clinical and translational scientists 

 

We walk through the steps of the Roadmap, depicted in Figure 1, explaining their execution in 

general terms for simple scenarios, why they are important, and why multidisciplinary 

collaboration is valuable to accomplish each step. The Roadmap does not cover all the steps 

necessary to write a protocol for running a prospective study, but instead specifies an explicit 

process for defining the study design itself, including information that is relevant for evaluating 

the quality of RWE that may be generated by that design. We suggest that following the 

Roadmap can help investigators generate high-quality RWE to answer questions that are 

important to patients, payers, regulators, and other stakeholders.   

 

A century’s worth of literature has contributed to the concepts described in the Roadmap. 

Several books explain nuances of these concepts [24,31–36]. The current paper is not a 

comprehensive introduction, but rather aims to describe a structured approach that can support 

the generation of high-quality evidence.  

 

Step 1: Causal question, causal model, and causal estimand 

 

The first step involves defining the causal question, causal model, and the causal estimand that 

would answer the question. To facilitate explanation of these concepts, we start by using 

frameworks for specifying components of a causal question and estimand to also specify key 

elements of the causal model (Step 1a) before further elaborating the causal model in Step 1b. 
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Step 1a: Define the causal question and causal estimand 

 

Many causal questions start with the objective of estimating the effect of an exposure (e.g., a 

medication or intervention) on an outcome.  Building on decades of research in the careful 

conduct of randomized and observational studies [36–40], both the International Council for 

Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) E9(R1) 

[41] and Target Trial Emulation [17,32,42,43] frameworks prompt investigators to define 

components of a causal question and estimand. The causal estimand is a mathematical quantity 

that represents the answer to the causal question (Table 2). 

 

An example of a question guided by these attributes might be: How would the risk of disease 

progression by 2 years have differed if all individuals who met eligibility criteria had received 

the drug under investigation (treatment strategy    ) versus an active comparator (treatment 

strategy    ) and no one dropped out of the study (   )? The best (albeit impossible!) way 

to answer this question would be to evaluate both the potential outcomes [44,45] individuals 

would have experienced had they received treatment strategy     and not been censored 

(        ) and the potential outcomes the same individuals would have experienced had they 

received treatment strategy     and not been censored (        ).  

 

A more fully elaborated structural causal model would help us describe the causal pathways that 

generate these potential outcomes [46]. For now, we simply consider that, if we were able to 

observe both potential outcomes for all members of our target population, then the answer to our 

question would be given by the causal risk difference (or “average treatment effect”), 

                                    . 

 

This mathematical quantity – a function of the potential outcomes defined above – is the causal 

estimand of interest in our example. Table 2 lists other examples of causal estimands.   

 

Importance: Even though we can only observe at most one potential outcome for each 

individual [47], and even though it is not possible to guarantee complete follow-up in a real trial, 

precise definition of the causal question and estimand based on the treatment strategies defined 
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in Table 2 is crucial for specifying a study design and analysis plan to provide the best possible 

effect estimate. Ultimately, we need a procedure that can be applied to the data to generate an 

appropriate estimate (e.g., a 5% decrease in risk of disease progression). To assess whether that 

number provides an answer to our causal question, we must first define mathematically what we 

aim to estimate.  

 

Build a Multidisciplinary Collaboration: Experts in causal inference may come from a variety 

of fields, including economics, biostatistics, epidemiology, computational science, the social 

sciences, medicine, pharmacology, and others. They can help to translate a research question into 

a causal estimand. 

 

Step 1b: Specify a causal model describing how data have been or will be generated  

 

Next, we consider what we know (and do not know) about the processes that will generate – or 

that have already generated – data to answer this question. First, we consider the type of study 

(e.g., pragmatic randomized trial, retrospective cohort study). Then, we consider what factors 

affect the variables that are part of our treatment strategies – found in Table 2 and referred to as 

intervention variables below – and the outcome in our proposed study. It is also important to 

consider factors that are affected by intervention and/or outcome variables, such as mediators, 

colliders, or any study eligibility criteria that are outcome-dependent.  

 

This background knowledge helps to generate the causal model [46]. We specified some key 

variables in our causal model in Step 1a (in Table 2 and our potential outcomes). Now, we 

further elaborate our causal model by describing potential causal relationships between these and 

other important variables. Multiple tools and frameworks can help elicit this information, such as 

conceptual models and causal graphs (e.g., directed acyclic graphs or single world intervention 

graphs) [39,48–51].  

 

Figure 2 gives a simple example of causal graph construction for a prospective observational 

cohort study, starting with writing down all intervention and outcome variables. When some 

outcomes are missing, we don’t observe the outcome, Y, for all participants. Instead, we observe 
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  , which is equal to the actual outcome if it was observed and is missing otherwise (Figure 2a). 

Arrows denote possible effects of one variable on another.  

 

Then, we attempt to write down factors that might influence (or be influenced by) these 

variables. Figure 2b shows two examples (age and a biomarker), though real causal graphs 

generally include many more variables. In a classic randomized trial, only the randomization 

procedure affects baseline treatment assignment, whereas in an observational study, participant 

characteristics or other non-randomized factors (such as policy or environmental factors) may 

affect both the treatment/exposure and the outcome. Next, we consider factors that are 

unmeasured or difficult to measure that might influence treatment, outcomes, or censoring. 

Figure 2c shows access to healthcare as an example.  

 

Causal graphs can become much more complicated, especially when working with longitudinal 

data [52], using proxies for unmeasured variables [53], or combining different data sources [54] 

(as demonstrated in the case study of Semaglutide and Cardiovascular Outcomes). A carefully 

constructed causal graph should also include sample selection, competing risks, intercurrent 

events, and measurement error [32,55]. Examples of causal graph construction are available for a 

wide variety of study designs including retrospective cohort, cross-sectional, and case-control 

studies in which selection into the study sample may be affected by the outcome [56,57]. 

 

Importance: Considering which factors may affect or be affected by intervention variables and 

outcomes helps to determine whether we can answer our question based on existing data or data 

that we will collect. The final graph should be our best honest judgement based on available 

evidence and incorporating remaining uncertainty [32].  

 

Build a Multidisciplinary Collaboration: If questions remain about some aspect of this model, 

such as how physicians decide to prescribe a medication in different practice settings, obtain 

input from clinicians or other relevant collaborators before moving on.  
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Consider whether the causal question and estimand (Step 1a) need to be modified based on 

Step 1b. 

 

After writing down our causal model, we sometimes need to change our question [58]. For 

example, we may have realized that an intercurrent event (such as death) prevents us from 

observing the outcome for some individuals. As suggested by ICH E9(R1), we could modify the 

question to consider the effect on a composite outcome of the original outcome or death [41]. 

ICH E9(R1) discusses other intercurrent events and alternative estimands  [41]. 

 

Step 2: Consider the observed data 

 

The causal model from Step 1b lets us specify what we know about the real-world processes that 

generate our observed data. This model can inform what data we collect in a prospective study or 

help to determine whether existing data sources include relevant information. Next, we consider 

the actual data we will observe.  

 

Specific questions to address regarding the observed data include the following: How are the 

relevant exposures, outcomes, and covariates, including those defining eligibility criteria, 

measured in the observed data? Are they measured differently (including different monitoring 

protocols) in different data sources or at different timepoints? Are we able to measure all 

variables that are important common causes of the intervention variables and the outcome? Is the 

definition of time zero in the data consistent with the causal question [42]?  

 

Importance: After considering these questions, we may need to modify Step 1. For example, if 

we realize that the data we are able to observe only include patients seen at tertiary care facilities, 

we may need to change the question (Step 1a) to ask about the difference in the risk of disease 

progression by two years if all individuals meeting our eligibility criteria and receiving care at 

tertiary facilities received one intervention or the other. Knowledge about factors that affect how 

variables are measured and whether they are missing should be incorporated in the causal model 

(Step 1b). Completing this step also helps investigators assess whether the data are fit-for-use [3] 

and whether we are able to estimate a causal effect from the observed data (discussed in Step 3). 
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Build a Multidisciplinary Collaboration: Clinicians and clinical informaticists can help to 

explain the way variables are measured in relation to underlying medical concepts or in relation 

to a particular care setting. Statisticians can help to determine how to match baseline time zero in 

the observed data with the follow-up period in the causal question.  

 

Step 3: Assess identifiability: Can the proposed study provide an answer to our causal 

question? 

 

In Step 3, we ask whether the data we observe (Step 2), together with our knowledge about how 

these data are generated (Step 1b), are sufficient to let us answer our causal question (Step 1a). 

As described in Step 1a, we cannot directly estimate our causal estimand (which is a function of 

counterfactual outcomes). Instead, we will express the causal estimand as a function of the 

observed data distribution (called a statistical estimand, described in Step 4).  

 

The difference between the true values of the statistical and causal estimands is sometimes 

referred to as the causal gap [27]. If there is a causal gap, even the true value of the statistical 

estimand would not provide an answer to our causal question. While we can never be certain of 

the size of the causal gap for studies incorporating RWD and even for many questions using data 

from traditional randomized trials, we must use our background knowledge to provide an honest 

appraisal. Causal identification assumptions help us to explicitly state what must be true in order 

to conclude that the causal gap is zero and that we are thus able to estimate a causal effect using 

the proposed data. Table 3 lists two examples of identification assumptions with informal 

explanations of their meaning.  

 

Exchangeability, in particular, can also be framed in terms of causal graphs [46]. Confounding 

by unmeasured variables is a widely discussed source of bias in observational studies. 

Conditioning on a variable that is independently affected by both treatment and the outcome – 

either by adjusting for that variable in the analysis or by selecting retrospective study participants 

based on certain values of that variable – may also result in a non-causal association between 
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treatment and outcomes and a statistical estimand that is biased for the true causal effect (i.e., 

collider bias or selection bias) [32].  

 

Depending on the causal model and question (Step 1), additional assumptions or alternate sets of 

assumptions may be necessary. For example, if we aim to transport or generalize a causal effect 

to a new population, we must assume that all values of effect modifiers represented in the target 

population are also represented in the original study population and that all effect modifiers with 

different distributions in these two populations are measured [59–63]. Hernán and Robins (2020) 

[32], among others, provide in-depth discussions of identification assumptions. The three 

companion papers demonstrate the evaluation of these assumptions.  

 

Importance: Considering and documenting the plausibility of the causal identification 

assumptions helps to determine whether steps can be taken to decrease the potential magnitude 

of the causal gap. If we conclude that these assumptions are unlikely to be satisfied, then we 

should consider modifications to Steps 1-2. We may need to limit the target population to those 

who have a chance of receiving the intervention or evaluate the effect of a more realistic 

treatment rule to improve the plausibility of the positivity assumption [64,65]. We may need to 

measure more of the common causes depicted in our causal graph or modify the question to 

improve the plausibility of the exchangeability assumption [66]. If multiple study designs are 

feasible, Step 3 can help us to consider which study design is based on more reasonable 

assumptions [67].  

 

If we know that a key variable affecting treatment and outcomes or censoring and outcomes is 

not measured, then we generally cannot identify a causal effect from the observed data without 

measuring that variable or making additional assumptions [17,32,37]. For this and other reasons, 

many studies analyzing RWD appropriately report statistical associations and not causal effects, 

though sensitivity analyses (Step 6) may still help to evaluate whether a causal effect exists 

[68,69]. Nonetheless, if a retrospective study was initially proposed but the causal identification 

assumptions are highly implausible and cannot be improved using existing data, then 

investigators should consider prospective data collection to better evaluate the effect of interest. 
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In general, it would be unreasonable to expect that all causal identification assumptions would be 

exactly true in RWE studies – or even in many traditional randomized trials that do not utilize 

RWD due to issues such as informative missingness [32]. Nevertheless, careful documentation of 

Steps 1-3 in the pre-specified analysis plan and in the study report helps not only the investigator 

but also regulators, clinicians, and other stakeholders to evaluate the quality of evidence 

generated by the study about the causal effect of interest. Step 3 helps us to specify a study with 

the smallest causal gap possible. Sensitivity analyses, discussed in Step 6, help to quantify a 

reasonable range for the causal gap, further aiding in the interpretation of RWE study results. 

 

Build a Multidisciplinary Collaboration: Experts in causal inference can aid other 

investigators in evaluating different causal identification assumptions. For example, reasoning 

about the exchangeability assumption can become quite complicated if there are multiple 

intervention variables (e.g., when the treatment varies over time) [39,52]. In such cases, 

graphical criteria may be used to determine visually from a causal graph whether sufficient 

variables have been measured to satisfy the exchangeability assumption [39,46,70]. Software 

programs can also facilitate this process [71,72]. 

 

Step 4: Define the statistical estimand 

 

If, after assessing identifiability, we decide to proceed with our study, we aim to define a 

statistical estimand that is as close as possible to the causal estimand of interest.  Recall our 

causal risk difference for a single time-point intervention and outcome: 

                                      

 

In a simple case where participant characteristics other than our intervention variables and 

outcome – denoted W – are only measured at baseline, then the statistical estimand that is 

equivalent to the causal effect if all identification assumptions are true is given by 

                                                  

 

In words, we have re-written the answer to our causal question (which is defined based on 

potential outcomes that we cannot simultaneously observe) in terms of a quantity that we can 
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estimate with our data: the average (for our target population) of the difference in risk of our 

observed outcome associated with the different treatment strategies, adjusted for measured 

confounders. 

 

Importance: The traditional practice of defining the statistical estimand as a coefficient in a 

regression model has several downsides, even if the model is correctly specified (a questionable 

assumption, as discussed below) [24]. This approach starts with a tool (e.g., a regression model) 

and then asks what problem it can solve, rather than starting with a problem and choosing the 

best tool [73]. For example, the hazard ratio may be estimated based on a coefficient in a Cox 

regression but does not correspond to a clearly defined causal effect [74–76]. Instead, the 

Roadmap involves choosing a statistical estimand that corresponds to the causal estimand under 

identification assumptions. We thus specify a well-defined quantity that can be estimated from 

the observed data and that is directly linked to the causal question. 

 

Build a Multidisciplinary Collaboration: Defining a statistical estimand that would be 

equivalent to the causal effect of interest under identification assumptions is more challenging 

when there are post-baseline variables that are affected by the exposure and that, in turn, affect 

both the outcome and subsequent intervention variables [39]. This situation is common in studies 

where the exposure is measured at multiple time-points. In such a situation, statistician 

collaborators can help to define the statistical estimand using approaches such as the longitudinal 

g-computation formula [39].   

 

Step 5: Choose a statistical model and estimator that respects available knowledge and 

uncertainty based on statistical properties 

 

The next step is to define a statistical model (formally, the set of possible data distributions) and 

to choose a statistical estimator. The statistical model should be compatible with the causal 

model (Step 1b). For example, knowledge that treatment will be randomized (design knowledge 

that we described in our causal model) implies balance in baseline characteristics across the two 

arms (with slight differences due to chance in a specific study sample). We could also 

incorporate knowledge that a continuous outcome falls within a known range or that a dose-
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response curve is monotonic (e.g., based on prior biological data) into our statistical model. A 

good statistical model summarizes such statistical knowledge about the form of the relationships 

between observed variables that is supported by available evidence without adding any 

unsubstantiated assumptions (such as linearity, or absence of interactions); models of this type 

are often referred to as semi- or non-parametric or simply realistic statistical models [24]. 

 

Given a statistical model, the choice of estimator should be based on pre-specified statistical 

performance benchmarks that evaluate how well it is likely to perform in estimating the 

statistical estimand [24]. Examples include type I error control, 95% confidence interval (CI) 

coverage, statistical bias, and precision. Statistical bias refers to how far the average estimate 

across many samples would be from the true value of the statistical estimand. An estimator must 

perform well even when we do not know the form of the association between variables in our 

dataset, and it must be fully pre-specified [24]. 

 

Many commonly used estimators rely on estimating an outcome regression (i.e., the expected 

value of the outcome given the treatment and values of confounders), a propensity score (i.e., the 

probability of receiving a treatment or intervention given the measured confounders), or both. 

Without knowing the form of these functions, we do not know a priori whether they are more 

likely to be accurately modeled with a parametric regression or a flexible machine learning 

algorithm allowing for non-linearities and interactions between variables [24,73,77]. The 

traditional practice of defaulting to a parametric regression as the statistical estimator imposes 

additional statistical assumptions, even though they are not necessary. Fortunately, estimators 

exist that allow for full pre-specification of all machine learning and parametric approaches used, 

data-adaptive selection (e.g., based on cross-validation) of the algorithm(s) that perform best for 

a given dataset, and theoretically sound 95% confidence interval construction (leading to proper 

coverage under reasonable conditions) [24].  

 

Importance: Effect estimates that are based on incorrectly specified models – such as a main 

terms linear regression when there is truly non-linearity or interactions between variables – are 

biased, and that bias does not get smaller as sample size increases [24]. This bias may result in 

misleading conclusions. We aim to choose an estimator that not only has minimal bias but also is 
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efficient – thereby producing 95% confidence intervals that are accurate but as narrow as 

possible – to make maximal use of the data [24].  

 

If, after consideration of the statistical assumptions and properties of the estimators, multiple 

estimators are considered, then the bias, variance, and 95% CI coverage of all estimators should 

be compared using outcome-blind simulations that mimic the true proposed experiment as 

closely as possible [78]. We use the term “outcome-blind” to mean that the simulations are 

conducted without information on the observed treatment-outcome association in the current 

study; such simulations may utilize other information from previously collected data or from the 

current study data if available (e.g., data on baseline covariates, treatment, and censoring) to 

approximate the real experiment [78]. Simulations conducted before data collection may use a 

range of plausible values for these study characteristics [79]. As recommended by ICH E9(R1), 

simulations should also be conducted for cases involving plausible violations of the statistical 

assumptions underpinning the estimators [41]. Examples of such violations include non-linearity 

for linear models or inaccurate prior distributions for Bayesian parameters. For an example of 

conducting such a simulation, please see the Drug Safety and Monitoring case study. 

 

Build a Multidisciplinary Collaboration: Statistician collaborators can help to pre-specify an 

estimator with the statistical properties described above. Resources are increasingly available to 

assist with pre-specification of statistical analysis plans (SAPs) based on state-of-the-art 

estimation approaches. For example, Gruber et al. (2022) [80] provide a detailed description of 

how to pre-specify a SAP using targeted minimum loss-based estimation (TMLE) [81] and super 

learning [77], a combined approach that integrates machine learning to minimize the chance that 

statistical modeling assumptions are violated [24]. 

 

Step 6: Specify a procedure for sensitivity analysis 

 

Sensitivity analyses in Step 6 attempt to quantify how the estimated results (Step 5) would 

change if the untestable causal identification assumptions from Step 3 were violated [32,68,82–

84]. In contrast, the simulations in Step 5 consider bias due to violations of testable statistical 

assumptions, which ICH E9(R1) considers as a different form of sensitivity analysis [41]. One 
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mechanism of conducting a causal sensitivity analysis in Step 6 is to consider the potential 

magnitude and direction of the causal gap; this process requires subject matter expertise and 

review of prior evidence [68,83–85]. Sensitivity analysis also allows for construction of 

confidence intervals that account for plausible values of the causal gap [27,68,83–85]. 

Alternatively, investigators may assess for causal bias using negative control variables [86-87].  

 

The specifics of these methods – and alternative approaches – are beyond the scope of this paper, 

but the case study of Nifurtimox for Chagas Disease in the companion paper provides an 

overview of methods for sensitivity analysis, as well as a worked example of using available 

evidence to assess a plausible range for the causal gap. As discussed in this case study, the 

method of sensitivity analysis should be pre-specified prior to estimating the effect of interest 

[88]. This process avoids the bias that might occur if experts know the value of the estimate 

before defining the procedure they will use to decide whether a given shift in that estimate due to 

bias is reasonable [83].  

 

Importance: The process of using prior evidence to reason about likely values of the causal gap 

helps investigators to assess the plausibility that the bias due to a violation of identification 

assumptions could be large enough that the observed effect is negated [27,68,69,89]. While the 

exact magnitude of the causal effect may still not be identified due to known issues such as the 

potential for residual confounding, if an estimated effect is large enough, we may still obtain 

credible evidence that an effect exists [69,90]; this was the case in Cornfield et al. (1959)’s 

seminal sensitivity analysis of the effect of smoking on lung cancer [91]. Conversely, if the 

anticipated effect size is small and the plausible range of the causal gap is large, the proposed 

study may not be able to provide actionable information. Considering these tradeoffs can help 

investigators to decide whether to pursue a given RWE study or to consider alternate designs that 

are more likely to provide high-quality evidence of whether a causal effect exists [69,92]. 

 

Build a Multidisciplinary Collaboration:  If multiple correlated sources of bias are likely, 

more complex methods of evaluating a plausible range for the causal gap – and collaboration 

with investigators familiar with these methods – may be required [83]. 
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Step 7: Compare alternative study designs   

 

Roadmap Steps 1-6 help us to specify a study design and analysis plan, including the causal 

question and estimand, type of study and additional knowledge about how the data are generated, 

specifics of the data sources that will be collected and/or analyzed, assumptions that the study 

relies on to evaluate a causal effect, statistical estimand, statistical estimator, and procedure for 

sensitivity analysis. The type of study described by this design could fall anywhere on the 

spectrum from a traditional randomized trial to a fully observational analysis. In cases when it is 

not possible to conduct a traditional randomized trial due to logistical or ethical reasons – or 

when trial results would not be available in time to provide actionable information – the value of 

RWE studies is clear despite the possibility of a causal gap [32]. If conducting a randomized trial 

is feasible, baseline randomization of an intervention (as part of either a traditional or pragmatic 

trial [93]) still generally affords a higher degree of certainty that the estimated effect has a causal 

interpretation compared to analysis of non-randomized data. Yet sometimes, it is feasible to 

consider multiple different observational and/or randomized designs – each with different 

potential benefits and downsides. 

 

Consider a situation in which there is some evidence for a favorable risk-benefit profile of a 

previously studied intervention based on prior data, but those data are by themselves insufficient 

for regulatory approval for a secondary indication or for clear modification of treatment 

guidelines. In this context, it is possible that conducting a well-designed RWE study as opposed 

to a traditional randomized trial alone will shorten the time to a definitive conclusion, decrease 

the time patients are exposed to an inferior product, or provide other quantifiable benefits to 

patients
 
while still providing acceptable control of type I and II errors [94–96]. Yet other times, a 

proposed RWE design may be inferior to alternative options, or one design may not be clearly 

superior to another. When multiple study designs are considered, outcome-blind simulations 

consistent with our description of Steps 1-6 can help to compare not only type I error and power, 

but also metrics quantifying how the proposed designs will modify the medical product 

development process [94]. The case study of Semaglutide and Cardiovascular Outcomes 

demonstrates how to compare study designs that are based on Roadmap Steps 1-6.  
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Importance: A simulated comparison is not always necessary; one study design may be clearly 

superior to another. Yet often there are tradeoffs between studies with different specifications of 

Roadmap Steps 1-6. For example, in some contexts, we may consider augmenting a randomized 

trial with external data. When comparing the standard and augmented randomized trial designs, 

there may be a tradeoff between a) the probability of correctly stopping the study early when 

appropriate external controls are available and b) the worst-case type I error that would be 

expected if inappropriate external controls are considered [96]. Another example would be the 

tradeoff between the potential magnitudes of the causal gap when different assumptions are 

violated to varying degrees for studies relying on alternate sets of causal identification 

assumptions [67].  Simulated quantification of these tradeoffs using pre-specified benchmarks 

can help investigators to make design choices transparent [97].  

 

Build a Multidisciplinary Collaboration: Factors to consider when comparing different 

designs include the expected magnitude of benefit based on prior data and the quality of that data 

[11], the plausible bounds on the causal gap for a given RWE study, the treatments that are 

currently available [11], and preferences regarding tradeoffs between design characteristics such 

as type I versus type II error control [97]. Because these tradeoffs will be context-dependent 

[11,97], collaboration with patient groups and discussion with regulatory agencies is often 

valuable when choosing a study design from multiple potential options.  

 

A list of Roadmap steps for specifying key elements of a study design and analysis plan 

 

Table 4 provides a list of considerations to assist investigators in completing and documenting all 

steps of the Roadmap. Complete reporting of RWE study results should include all pre-specified 

Roadmap steps, though information supporting decisions in the final design and analysis plan, 

such as causal graphs or simulations, may be included as supplementary material. Note that all 

steps should be pre-specified before conducting the study. 

 

  

https://doi.org/10.1017/cts.2023.635 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2023.635


Discussion 

 

The Roadmap can help investigators to pre-specify design and analysis plans for studies that 

utilize RWD, choose between study designs, and propose high-quality RWE studies to the FDA 

and other agencies. We describe the steps of the Roadmap in order to disseminate this 

methodology to clinical and translational scientists. The companion papers presenting case 

studies on Drug Safety and Monitoring, Nifurtimox for Chagas Disease, and Semaglutide and 

Cardiovascular Outcomes demonstrate applications of the Roadmap and explain specific steps in 

greater detail.  

 

Past descriptions of the Roadmap have largely been targeted to quantitative scientists [24–

27,29,30]. In this paper, we focus on intuitive explanations rather than formal mathematical 

results to make these causal inference concepts more accessible to a wide audience. We 

emphasize the importance of building a multidisciplinary collaboration, including both clinicians 

and statisticians, during the study planning phase.  

 

We also introduce an extension of previous versions of the Roadmap to emphasize how 

outcome-blind simulations may be used not only to compare different statistical estimators but 

also to evaluate different study designs. This extension aligns with the FDA’s Complex 

Innovative Trial Designs Program guidance for designs that require simulation to estimate type I 

and II error rates [98] and emphasizes the quantitative comparison of the proposed study to a 

randomized trial or other feasible RWE designs. The aim of this additional step is to facilitate 

evaluation of the strengths and weaknesses of each potential approach. 

 

The Roadmap aligns with other regulatory guidance documents, as well; these include the FDA’s 

Framework and Draft Guidance documents for RWE that emphasize the quality and 

appropriateness of the data [3,99–101] and the ICH E9(R1) guidance on estimands and 

sensitivity analysis [41]. The Roadmap is also consistent with other proposed frameworks for 

RWE generation. Within the field of causal inference, the Roadmap brings together concepts 

including potential outcomes [44,45], the careful design of non-experimental studies 

[35,36,38,40], causal graphs [39,48–51] and structural causal models [46], causal identification 
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[39,46,102], translation of causal to statistical estimands using the g-formula [39], and methods 

for estimation and sensitivity analysis [24,34,68,77,82,84]. The Roadmap is also compatible with 

frameworks including the Target Trial Emulation framework [17,43], the Patient-Centered 

Outcomes Research Institute (PCORI) Methodology Standards [19], white papers from the 

Duke-Margolis Center [18,103], the REporting of studies Conducted using Observational 

Routinely-Collected health Data (RECORD) Statement [104], the Structured Preapproval and 

Postapproval Comparative study design framework [105], and the STaRT-RWE template [20]. 

The purpose of the Roadmap is not to replace these – and many other – useful sources of 

guidance, but rather to provide a unified framework that covers key steps necessary to follow a 

wide range of guidance in a centralized location. Furthermore, while many recommendations for 

RWE studies list what to think about (e.g., types of biases or considerations for making RWD 

and trial controls comparable), the Roadmap aims instead to make explicit a process for how to 

make and report design and analysis decisions that is flexible enough to be applied to any use 

case along the spectrum from a traditional randomized trial to a fully observational analysis. 

 

With increasing emphasis by regulatory agencies around the world regarding the importance of 

RWE [5], the number of studies using RWD that contribute to regulatory decisions is likely to 

grow over time. Yet a recent review of RWE studies reported that “nearly all  [reviewed] studies 

(95%) had at least one avoidable methodological issue known to incur bias” [106]. By following 

the Roadmap steps to pre-specify a study design and analysis plan, investigators can set 

themselves up to convey relevant information to regulators and other stakeholders, to produce 

high-quality estimates of causal effects using RWD when possible, and to honestly evaluate 

whether the proposed methods are adequate for drawing causal inferences.  

 

Disclaimer: The contents are those of the author(s) and do not necessarily represent the official 

views of, nor an endorsement by, FDA/HHS, the U.S. Government, or the authors’ affiliations. 
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Figure 1: The Causal Roadmap 

 

  

Caption: *The contrast of interest may be additive (e.g., risk difference) or multiplicative 

(e.g., relative risk) 
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Figure 2: Basic Process for Generating a Causal Graph 

 

 

 

Caption:    is equal to the actual outcome value if it was observed and is missing otherwise. 
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Table 1: Companion Papers Demonstrating Use of the Roadmap 

Case Study  Context Roadmap Steps 

Emphasized 

Sentinel System and Scalable 

Phenotyping 

Drug safety and monitoring Outcome-blind
†
 simulations 

to guide estimator pre-

specification and machine 

learning plus natural language 

processing to enhance 

identifiability 

Nifurtimox for Chagas 

Disease 

Randomized trial infeasible Sensitivity analysis and 

defining the plausible causal 

gap 

Semaglutide and 

Cardiovascular Outcomes 

Secondary indications Application of the Roadmap 

to a hybrid randomized-RWD 

study and comparison of 

study designs 

†
We use outcome-blind to mean without information on the observed treatment-outcome 

association. 
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Table 2: Components of a Causal Question and Estimand per ICH E9(R1) [41] and Target Trial 

Emulation [17]  

ICH E9(R1) 

attribute  

Target Trial 

Emulation 

Protocol 

Component 

Explanation Related Notation 

in this Paper 

Population Eligibility 

criteria 

Inclusion and exclusion criteria, including 

dates of eligibility, for the potential study 

population 

Measured 

baseline 

characteristics
†
: W 

Treatment  Treatment 

strategies 

The ideal hypothetical intervention(s) of 

interest in each arm of the target trial, 

including what treatment or exposure or 

intervention individuals would experience 

at study baseline and any post-baseline 

interventions, such as preventing censoring 

or requiring adherence for a specified 

duration. It is also important to consider 

whether there are different versions of 

treatment (e.g., different versions of the 

same surgery performed by different 

surgeons), and which versions would be 

included in the treatment strategy [107]. 

 

Baseline 

treatment: A, 

Censoring
††

: C
 
 

 Follow-up 

period  

The events that define the starting (e.g., 

randomization, prescription) and stopping 

(e.g., outcome, death) points for the 

observation period 

 

Variable or 

endpoint 

Outcome Outcome of interest, including the 

timepoint(s) at which the outcome will be 

evaluated 

Outcome: Y 

Population 

summary 

Causal 

contrasts of 

interest 

Causal estimand
†††

: e.g., average treatment 

effect, causal relative risk, average 

treatment effect within pre-specified 

subgroups 

See below 

†
Baseline participant characteristics can include additional variables not used to define eligibility criteria. Baseline variables do not 

completely characterize the population, but for simplicity, we only consider measured baseline characteristics in the notation below. 

††
In the current paper we focus on interventions on baseline treatment and postbaseline censoring. However, the approach represented 

extends naturally to treatment strategies that incorporate additional postbaseline interventions, (see e.g., Robins and Hernán (2009) [108], 

Petersen (2014) [28]) 

†††
A mathematical quantity that is a function of potential outcomes (see below).  
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Table 3: Examples of Identification Assumptions  

Assumption Basic Explanation of Meaning 

Exchangeability
†
  This assumption is generally true if  

1. there are no unmeasured common causes of variables that are 

part of the treatment strategies (Table 2: e.g., baseline or 

postbaseline treatment(s), censoring) and the outcome 

(informally, if there is no unmeasured confounding) and 

2. we have not conditioned on a variable that is affected by the 

treatment variable(s) [32,46]. 

Positivity This assumption is true if, for every possible combination of measured 

confounding variables, individuals with those characteristics have a 

positive probability of following any of the treatment strategies of 

interest. 

†
Full exchangeability is generally not required if weaker conditions (e.g., mean exchangeability, 

sequential conditional exchangeability, or others) hold [32].  
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Table 4: Steps for Specifying Key Elements of a Study Design and Analysis Plan Using the 

Roadmap 

Roadmap Step 

1a 

● Specify the causal question and estimand. 

● ICH E9(R1) attributes: Population, treatment, variable or endpoint, 

population summary [41] 

● Target Trial Emulation Protocol Components: Eligibility criteria, 

treatment strategies, follow-up period, outcome, causal contrasts of 

interest [32] 

1b 

● Specify the causal model (based on background knowledge about the proposed 

study). 

● Specify the type of study (e.g., traditional randomized trial, retrospective 

cohort) 

● Document whether censoring, competing risks, or other intercurrent 

events occurred and factors that may have affected them. Adjust the 

question as needed. 

2 

● Define the observed data that will be or has been collected. 

● Document how the inclusion/exclusion criteria, treatment variables, 

outcome(s), and other relevant variables are measured, how time zero is 

defined, and important differences between data sources. 

3 

● Assess identifiability of the causal estimand from the observed data. 

● Explicitly state the assumptions required for identification, and evaluate 

their plausibility. 

● Consider modifications to Steps 1-2 to minimize the causal gap. 

● If a retrospective study had been planned but identification 

assumptions are highly implausible, consider primary data 

collection or linkage of data from different sources as necessary to 

ensure relevant information capture for the causal question and 

estimand. 

4 ● Define the statistical estimand. 

5 

● Specify the statistical model, estimator, and method of confidence interval 

construction. 

● List the assumptions the proposed estimator and method of confidence 

interval construction rely upon. 
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● Describe the expected statistical bias and variance of the estimator under 

plausible conditions. 

● If multiple estimators are considered, compare them with outcome-blind 

simulations based on: 

● statistical bias, variance, confidence interval coverage of the statistical 

estimand, type I error probability, and power; 

● with plausible violations of model assumptions.  

6 

● Specify the sensitivity analyses.  

● Document the method for defining plausible bounds for the causal gap 

and/or methods for estimation of the causal gap (e.g., based on negative 

controls). 

● Provide confidence intervals for the causal effect of interest under the 

hypothesized size of the causal gap, across the full range of plausible 

causal gaps.  

7 

● Compare feasible study designs (Steps 1-6) using outcome-blind simulations 

based on: 

● causal metrics (confidence interval coverage, type I error probability, and 

power for a causal effect),  

● and metrics to quantify differences in the medical product development 

process of each design. 

● Include a comparison to a randomized trial if feasible. 
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