37 research outputs found

    Strong, Light, Multifunctional Fibers of Carbon Nanotubes with Ultrahigh Conductivity

    Get PDF
    Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission

    Mpox vaccination willingness, determinants, and communication needs in gay, bisexual, and other men who have sex with men, in the context of limited vaccine availability in the Netherlands (Dutch Mpox-survey)

    Get PDF
    IntroductionIn the 2022 multicountry mpox (formerly named monkeypox) outbreak, several countries offered primary preventive vaccination (PPV) to people at higher risk for infection. We study vaccine acceptance and its determinants, to target and tailor public health (communication-) strategies in the context of limited vaccine supply in the Netherlands. MethodsOnline survey in a convenience sample of gay, bisexual and other men who have sex with men, including transgender persons (22/07-05/09/2022, the Netherlands). We assessed determinants for being (un)willing to accept vaccination. We used multivariable multinominal regression and logistic regression analyses, calculating adjusted odds ratios (aOR) and 95 percent confidence-intervals. An open question asked for campaigning and procedural recommendations. ResultsOf respondents, 81.5% (n = 1,512/1,856) were willing to accept vaccination; this was 85.2% (799/938) in vaccination-eligible people and 77.7% (713/918) in those non-eligible. Determinants for non-acceptance included: urbanization (rural: aOR:2.2;1.2-3.7; low-urban: aOR:2.4;1.4-3.9; vs. high-urban), not knowing mpox-vaccinated persons (aOR:2.4;1.6-3.4), and lack of connection to gay/queer-community (aOR:2.0;1.5-2.7). Beliefs associated with acceptance were: perception of higher risk/severity of mpox, higher protection motivation, positive outcome expectations post vaccination, and perceived positive social norms regarding vaccination. Respondents recommended better accessible communication, delivered regularly and stigma-free, with facts on mpox, vaccination and procedures, and other preventive options. Also, they recommended, "vaccine provision also at non-clinic settings, discrete/anonymous options, self-registration" to be vaccinated and other inclusive vaccine-offers (e.g., also accessible to people not in existing patient-registries). ConclusionIn the public health response to the mpox outbreak, key is a broad and equitable access to information, and to low-threshold vaccination options for those at highest risk. Communication should be uniform and transparent and tailored to beliefs, and include other preventive options. Mpox vaccine willingness was high. Public health efforts may be strengthened in less urbanized areas and reach out to those who lack relevant (community) social network influences

    Conductivity and Ambient Stability of Halogen-Doped Carbon Nanotube Fibers

    Get PDF
    Carbon nanotube fibers were fabricated using a variety of spinning conditions and post-spinning processing with the goal of creating a high-conductivity yet environmentally stable fiber. These fiber variants were then doped with bromine, iodine, iodine chloride, or iodine bromide and their electrical and microstructural properties were characterized. Environmentally stable compounds were synthesized with electrical conductivity greater than 50,000 Scm

    How prepared are we for cross-border outbreaks? An exploratory analysis of cross-border response networks for outbreaks of multidrug resistant microorganisms in the Netherlands and Germany

    No full text
    Background: The emergence and spread of multidrug resistant microorganisms is a serious threat to transnational public health. Therefore, it is vital that cross-border outbreak response systems are constantly prepared for fast, rigorous, and efficient response. This research aims to improve transnational collaboration by identifying, visualizing, and exploring two cross-border response networks that are likely to unfold during outbreaks involving the Netherlands and Germany. Methods: Quantitative methods were used to explore response networks during a cross-border outbreak of carbapenem resistant Enterobacteriaceae in healthcare settings. Eighty-six Dutch and German health professionals reflected on a fictive but realistic outbreak scenario (response rate ≈ 70%). Data were collected regarding collaborative relationships between stakeholders during outbreak response, prior working relationships, and trust in the networks. Network analysis techniques were used to analyze the networks on the network level (density, centralization, clique structures, and similarity of tie constellations between two networks) and node level (brokerage measures and degree centrality). Results: Although stakeholders mainly collaborate with stakeholders belonging to the same country, transnational collaboration is present in a centralized manner. Integration of the network is reached, since several actors are beneficially positioned to coordinate transnational collaboration. However, levels of trust are moderately low and prior-existing cross-border working relationships are sparse. Conclusion: Given the explored network characteristics, we conclude that the system has a promising basis to achieve effective coordination. However, future research has to determine what kind of network governance form might be most effective and efficient in coordinating the necessary cross-border response activity. Furthermore, networks identified in this study are not only crucial in times of outbreak containment, but should also be fostered in times of non-crisis

    How prepared are we for cross-border outbreaks? An exploratory analysis of cross-border response networks for outbreaks of multidrug resistant microorganisms in the Netherlands and Germany

    Get PDF
    Background: The emergence and spread of multidrug resistant microorganisms is a serious threat to transnational public health. Therefore, it is vital that cross-border outbreak response systems are constantly prepared for fast, rigorous, and efficient response. This research aims to improve transnational collaboration by identifying, visualizing, and exploring two cross-border response networks that are likely to unfold during outbreaks involving the Netherlands and Germany. Methods: Quantitative methods were used to explore response networks during a cross-border outbreak of carbapenem resistant Enterobacteriaceae in healthcare settings. Eighty-six Dutch and German health professionals reflected on a fictive but realistic outbreak scenario (response rate ≈ 70%). Data were collected regarding collaborative relationships between stakeholders during outbreak response, prior working relationships, and trust in the networks. Network analysis techniques were used to analyze the networks on the network level (density, centralization, clique structures, and similarity of tie constellations between two networks) and node level (brokerage measures and degree centrality). Results: Although stakeholders mainly collaborate with stakeholders belonging to the same country, transnational collaboration is present in a centralized manner. Integration of the network is reached, since several actors are beneficially positioned to coordinate transnational collaboration. However, levels of trust are moderately low and prior-existing cross-border working relationships are sparse. Conclusion: Given the explored network characteristics, we conclude that the system has a promising basis to achieve effective coordination. However, future research has to determine what kind of network governance form might be most effective and efficient in coordinating the necessary cross-border response activity. Furthermore, networks identified in this study are not only crucial in times of outbreak containment, but should also be fostered in times of non-crisis

    How prepared are we for cross-border outbreaks? An exploratory analysis of cross-border response networks for outbreaks of multidrug resistant microorganisms in the Netherlands and Germany

    No full text
    Background The emergence and spread of multidrug resistant microorganisms is a serious threat to transnational public health. Therefore, it is vital that cross-border outbreak response systems are constantly prepared for fast, rigorous, and efficient response. This research aims to improve transnational collaboration by identifying, visualizing, and exploring two cross-border response networks that are likely to unfold during outbreaks involving the Netherlands and Germany. Methods Quantitative methods were used to explore response networks during a cross-border outbreak of carbapenem resistant Enterobacteriaceae in healthcare settings. Eighty-six Dutch and German health professionals reflected on a fictive but realistic outbreak scenario (response rate 70%). Data were collected regarding collaborative relationships between stakeholders during outbreak response, prior working relationships, and trust in the networks. Network analysis techniques were used to analyze the networks on the network level (density, centralization, clique structures, and similarity of tie constellations between two networks) and node level (brokerage measures and degree centrality). Results Although stakeholders mainly collaborate with stakeholders belonging to the same country, transnational collaboration is present in a centralized manner. Integration of the network is reached, since several actors are beneficially positioned to coordinate transnational collaboration. However, levels of trust are moderately low and prior-existing cross-border working relationships are sparse. Conclusion Given the explored network characteristics, we conclude that the system has a promising basis to achieve effective coordination. However, future research has to determine what kind of network governance form might be most effective and efficient in coordinating the necessary cross-border response activity. Furthermore, networks identified in this study are not only crucial in times of outbreak containment, but should also be fostered in times of non-crisis
    corecore