8 research outputs found

    Sleep problems during COVID-19 pandemic and its’ association to psychological distress: a systematic review and meta-analysis

    Get PDF
    Background: The emerging novel coronavirus disease 2019 (COVID-19) has become one of the leading cause of deaths worldwide in 2020. The present systematic review and meta-analysis estimated the magnitude of sleep problems during the COVID-19 pandemic and its relationship with psychological distress. Methods: Five academic databases (Scopus, PubMed Central, ProQuest, ISI Web of Knowledge, and Embase) were searched. Observational studies including case-control studies and cross-sectional studies were included if relevant data relationships were reported (i.e., sleep assessed utilizing the Pittsburgh Sleep Quality Index or Insomnia Severity Index). All the studies were English, peer-reviewed papers published between December 2019 and February 2021. PROSPERO registration number: CRD42020181644. Findings: 168 cross-sectional, four case-control, and five longitudinal design papers comprising 345,270 participants from 39 countries were identified. The corrected pooled estimated prevalence of sleep problems were 31% among healthcare professionals, 18% among the general population, and 57% among COVID-19 patients (all p-values < 0.05). Sleep problems were associated with depression among healthcare professionals, the general population, and COVID-19 patients, with Fisher's Z scores of -0.28, -0.30, and -0.36, respectively. Sleep problems were positively (and moderately) associated with anxiety among healthcare professionals, the general population, and COVID-19 patients, with Fisher's z scores of 0.55, 0.48, and 0.49, respectively. Interpretation: Sleep problems appear to have been common during the ongoing COVID-19 pandemic. Moreover, sleep problems were found to be associated with higher levels of psychological distress. With the use of effective programs treating sleep problems, psychological distress may be reduced. Vice versa, the use of effective programs treating psychological distress, sleep problems may be reduced

    Microstructure and Degree of Degradation of ZnO Varistors in Surge Arresters Due to Operation

    No full text
    The paper presents the test results for the microstructure of ZnO varistors comprising high voltage gapless surge arresters. The tests were performed on varistors produced in different periods and by various manufacturers. The research was inspired by different characteristics of changes in values of current flowing through surge arresters as a function of changes in values of system voltage in a 220 kV substation, and the temperature in a multi-year cycle. Furthermore, the effects of varistor microstructure degradation following a failure of an unsealed surge arrester were investigated. The results provided the grounds for assessment of ZnO varistor microstructure parameters in terms of their durability and resistance to degradation processes

    Investigation of Microstructure of ZnO Varistors Taken From Surge Arrester Counters

    No full text
    The paper presents investigations of microstructure of varistors of damaged surge arrester counters. A similar ZnO varistor, not subjected before to operation, was a point of reference in this research. The results of investigations of the ZnO varistors show an untypical phase composition of their material, which was characterized by unsatisfying homogeneity and cohesion. The degradation processes of varistor material in the subsequent stages were recognized and described. A harmful impact of humidity inside the untight surge arrester counter on its operation and its ZnO varistors was proved. Some conclusions being the result of the operation checking of surge arrester counters were presented too

    Study of Composite Insulator Sheds Subjected to Wheel Test

    No full text
    The paper presents investigation of the properties of the surface and the material stiffness – flexibility of series of samples taken from the sheds of the composite insulators. The insulators were previously subjected to wheel test. The wheel test and 1000 h salt fog test are regarded as alternative examination of the material resistance to the effects of electrical surface discharges. There were investigated two series of the samples of the composite insulators sheds. Examined specimens, made of HTV silicone rubber, were taken from the sheds of medium-voltage composite insulators of two different manufacturers. Insulators of both types passed the 1000 h salt fog test without reservation. Meanwhile, the wheel test can provide a basis for better distinguishing between physical properties of the tested materials. In the case of the insulators of one of the manufacturers the wheel test result was negative. Cross puncture effect of the sheds took place in several places. In addition, sheds were covered with dark coating of varying thicknesses. The results of the study indicated a significantly stronger influence of electrical and temperature factors on the sheds under investigations during the wheel test than in the case of the 1000 h salt fog test. It can be stated that these tests cannot be considered as alternative and it seems that wheel test enables better distinguishing between properties of the materials

    Comparative Studies on Degradation of Varistors Subjected to Operation in Surge Arresters and Surge Arrester Counters

    No full text
    The paper presents results of investigation of microstructure and micro-hardness for material of ZnO varistors applied to 110 kV surge arrester and surge arrester counter. The research combined two pairs of varistors, each consisted of one varistor subjected before to operation, while the other one was brand new unit and constituted a reference. All varistors were made of the same material by the reputable manufacture. The tests revealed a different degree of the material degradation for varistors subjected before to operation. This also refers to different degradation mechanism observed for the material of these varistors, if typical effects of degradation of aged ZnO varistors were considered as a reference. Physical state of spinel in the microstructure had a significant impact on the material degradation, however a considerable loosening of the microstructure associated with bismuth oxide was observed too. It was surprising, since the precipitates of the bismuth oxide phase most often showed very good binding to the ZnO matrix and high resistance to associated electrical, thermal and mechanical effects. The degradation effects in the ZnO matrix proved to be limited only
    corecore