105 research outputs found

    Probe-level linear model fitting and mixture modeling results in high accuracy detection of differential gene expression

    Get PDF
    BACKGROUND: The identification of differentially expressed genes (DEGs) from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model) method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication. RESULTS: On a wholly defined dataset, the PL-LM method was able to identify 75% of the differentially expressed genes within 10% of false positives. This accuracy was achieved both using the three replicates per conditions available in the dataset and using only one replicate per condition. CONCLUSION: The method achieves, on this dataset, a higher accuracy than the best set of tools identified by the authors of the dataset, and does so using only one replicate per condition

    High-resolution 3D analysis of mouse small-intestinal stroma.

    Get PDF
    Here we detail a protocol for whole-mount immunostaining of mouse small-intestinal villi that can be used to generate high-resolution 3D images of all gut cell types, including blood and lymphatic vessel cells, neurons, smooth muscle cells, fibroblasts and immune cells. The procedure describes perfusion, fixation, dissection, immunostaining, mounting, clearing, confocal imaging and quantification, using intestinal vasculature as an example. As intestinal epithelial cells prevent visualization with some antibodies, we also provide an optional protocol to remove these cells before fixation. In contrast to alternative current techniques, our protocol enables the entire villus to be visualized with increased spatial resolution of cell location, morphology and cell-cell interactions, thus allowing for easy quantification of phenotypes. The technique, which takes 7 d from mouse dissection to microscopic examination, will be useful for researchers who are interested in most aspects of intestinal biology, including mucosal immunology, infection, nutrition, cancer biology and intestinal microbiota

    Accuracy and differential bias in copy number measurement of CCL3L1 in association studies with three auto-immune disorders

    Get PDF
    Contains fulltext : 97604.pdf (publisher's version ) (Open Access)BACKGROUND: Copy number variation (CNV) contributes to the variation observed between individuals and can influence human disease progression, but the accurate measurement of individual copy numbers is technically challenging. In the work presented here we describe a modification to a previously described paralogue ratio test (PRT) method for genotyping the CCL3L1/CCL4L1 copy variable region, which we use to ascertain CCL3L1/CCL4L1 copy number in 1581 European samples. As the products of CCL3L1 and CCL4L1 potentially play a role in autoimmunity we performed case control association studies with Crohn's disease, rheumatoid arthritis and psoriasis clinical cohorts. RESULTS: We evaluate the PRT methodology used, paying particular attention to accuracy and precision, and highlight the problems of differential bias in copy number measurements. Our PRT methods for measuring copy number were of sufficient precision to detect very slight but systematic differential bias between results from case and control DNA samples in one study. We find no evidence for an association between CCL3L1 copy number and Crohn's disease, rheumatoid arthritis or psoriasis. CONCLUSIONS: Differential bias of this small magnitude, but applied systematically across large numbers of samples, would create a serious risk of false positive associations in copy number, if measured using methods of lower precision, or methods relying on single uncorroborated measurements. In this study the small differential bias detected by PRT in one sample set was resolved by a simple pre-treatment by restriction enzyme digestion

    The Putative bZIP Transcripton Factor BzpN Slows Proliferation and Functions in the Regulation of Cell Density by Autocrine Signals in Dictyostelium

    Get PDF
    The secreted proteins AprA and CfaD function as autocrine signals that inhibit cell proliferation in Dictyostelium discoideum, thereby regulating cell numbers by a negative feedback mechanism. We report here that the putative basic leucine zipper transcription factor BzpN plays a role in the inhibition of proliferation by AprA and CfaD. Cells lacking BzpN proliferate more rapidly than wild-type cells but do not reach a higher stationary density. Recombinant AprA inhibits wild-type cell proliferation but does not inhibit the proliferation of cells lacking BzpN. Recombinant CfaD also inhibits wild-type cell proliferation, but promotes the proliferation of cells lacking BzpN. Overexpression of BzpN results in a reduced cell density at stationary phase, and this phenotype requires AprA, CfaD, and the kinase QkgA. Conditioned media from high-density cells stops the proliferation of wild-type but not bzpN− cells and induces a nuclear localization of a BzpN-GFP fusion protein, though this localization does not require AprA or CfaD. Together, the data suggest that BzpN is necessary for some but not all of the effects of AprA and CfaD, and that BzpN may function downstream of AprA and CfaD in a signal transduction pathway that inhibits proliferation

    Efficient CO2-Reducing Activity of NAD-Dependent Formate Dehydrogenase from Thiobacillus sp KNK65MA for Formate Production from CO2 Gas

    Get PDF
    NAD-dependent formate dehydrogenase (FDH) from Candida boidinii (CbFDH) has been widely used in various CO2 reduction systems but its practical applications are often impeded due to low CO2-reducing activity. In this study, we demonstrated superior CO2-reducing properties of FDH from Thiobacillus sp. KNK65MA (TsFDH) for production of formate from CO2 gas. To discover more efficient CO2-reducing FDHs than a reference enzyme e. CbFDH, five FDHs were selected with biochemical properties and then, their CO2-reducing activities were evaluated. All FDHs including CbFDH showed better CO2-reducing activities at acidic pHs than at neutral pHs and four FDHs were more active than CbFDH in the CO2 reduction reaction. In particular, the FDH from Thiobacillus sp. KNK65IVIA (TsFDH) exhibited the highest CO2-reducing activity and had a dramatic preference for the reduction reaction, i.e., a 84.2-fold higher ratio of CO2 reduction to formate oxidation in catalytic efficiency (k(cat)/K-B) compared to CbFDH. Formate was produced from CO2 gas using TsFDH and CbFDH, and TsFDH showed a 5.8-fold higher formate production rate than CbFDH. A sequence and structural comparison showed that FDHs with relatively high CO2-reducing activities had elongated N- and C-terminal loops. The experimental results demonstrate that TsFDH can be an alternative to CbFDH as a biocatalyst in CO2 reduction systemsope

    Macrophage signaling in HIV-1 infection

    Get PDF
    The human immunodeficiency virus-1 (HIV-1) is a member of the lentivirus genus. The virus does not rely exclusively on the host cell machinery, but also on viral proteins that act as molecular switches during the viral life cycle which play significant functions in viral pathogenesis, notably by modulating cell signaling. The role of HIV-1 proteins (Nef, Tat, Vpr, and gp120) in modulating macrophage signaling has been recently unveiled. Accessory, regulatory, and structural HIV-1 proteins interact with signaling pathways in infected macrophages. In addition, exogenous Nef, Tat, Vpr, and gp120 proteins have been detected in the serum of HIV-1 infected patients. Possibly, these proteins are released by infected/apoptotic cells. Exogenous accessory regulatory HIV-1 proteins are able to enter macrophages and modulate cellular machineries including those that affect viral transcription. Furthermore HIV-1 proteins, e.g., gp120, may exert their effects by interacting with cell surface membrane receptors, especially chemokine co-receptors. By activating the signaling pathways such as NF-kappaB, MAP kinase (MAPK) and JAK/STAT, HIV-1 proteins promote viral replication by stimulating transcription from the long terminal repeat (LTR) in infected macrophages; they are also involved in macrophage-mediated bystander T cell apoptosis. The role of HIV-1 proteins in the modulation of macrophage signaling will be discussed in regard to the formation of viral reservoirs and macrophage-mediated T cell apoptosis during HIV-1 infection

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore