88 research outputs found
Effect of soil saturation on denitrification in a grassland soil
Nitrous oxide (N2O) is of major importance as a greenhouse gas and precursor of ozone (O3) destruction in the stratosphere mostly produced in soils. The soil-emitted N2O is generally predominantly derived from denitrification and, to a smaller extent, nitrification, both processes controlled by environmental factors and their interactions, and are influenced by agricultural management. Soil water content expressed as water-filled pore space (WFPS) is a major controlling factor of emissions and its interaction with compaction, has not been studied at the micropore scale. A laboratory incubation was carried out at different saturation levels for a grassland soil and emissions of N2O and N2 were measured as well as the isotopocules of N2O. We found that flux variability was larger in the less saturated soils probably due to nutrient distribution heterogeneity created from soil cracks and consequently nutrient hot spots. The results agreed with denitrification as the main source of fluxes at the highest saturations, but nitrification could have occurred at the lower saturation, even though moisture was still high (71% WFSP). The isotopocules data indicated isotopic similarities in the wettest treatments vs. the two drier ones. The results agreed with previous findings where it is clear there are two N pools with different dynamics: added N producing intense denitrification vs. soil N resulting in less isotopic fractionation
Recommended from our members
LEGO® bricks as building blocks for centimeter-scale biological environments
LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil
The emergent rhizosphere: imaging the development of the porous architecture at the root-soil interface
The rhizosphere is the zone of soil infuenced by a plant root and is critical for plant health and nutrient acquisition. All below ground resources must pass through this dynamic zone prior to their capture by plant roots. However, researching the undisturbed rhizosphere has proved very challenging. Here we compare the temporal changes to the intact rhizosphere pore structure during the emergence of a developing root system in diferent soils. High resolution X-ray Computed Tomography (CT) was used to quantify the impact of root development on soil structural change, at scales relevant to individual micro-pores and aggregates (µm). A comparison of micro-scale structural evolution in homogenously packed soils highlighted the impacts of a penetrating root system in changing the surrounding porous architecture and morphology. Results indicate the structural zone of infuence of a root can be more localised than previously reported (µm scale rather than mm scale). With time, growing roots signifcantly alter the soil physical environment in their immediate vicinity through reducing root-soil contact and crucially increasing porosity at the root-soil interface and not the converse as has often been postulated. This ‘rhizosphere pore structure’ and its impact on associated dynamics are discussed
Quantifying soil hydrology to explain the development of vegetation at an ex-arable wetland restoration site
Wetland restoration frequently sets well-defined vegetation targets, but where restoration occurs on highly degraded land such targets are not practical and setting looser targets may be more appropriate. Where this more ‘open-ended’ approach to restoration is adopted, surveillance methods that can track developing wetland habitats need to be established. Water regime and soil structure are known to influence the distribution and composition of developing wetland vegetation, and may be quantified using Sum Exceedence Values (SEV), calculated using the position of the water table and knowledge of soil stress thresholds. Use of SEV to explain patterns in naturally colonizing vegetation on restored, ex-arable land was tested at Wicken Fen (UK). Analysis of values from ten locations showed that soil structure was highly heterogeneous. Five locations had shallow aeration stress thresholds and so had the potential to support diverse wetland assemblages. Deep aeration stress thresholds at other locations precluded the establishment of a diverse wetland flora, but identified areas where species-poor wetland assemblages may develop. SEV was found to be a useful tool for the surveillance of sites where restoration targets are not specified in detail at the outset and may help predict likely habitat outcomes at sites using an open-ended restoration approach
Densidade populacional de Pratylenchus spp. em pastagens de Brachiaria spp. e sua influência na disponibilidade e na qualidade da forragem
The aim of this work was to evaluate the population density of Pratylenchus brachyurus and Pratylenchus zeae associated with Brachiaria brizantha, B. decumbens and B. humidicola and their influence on forage availability and quality. The experiment was conducte in the Hisaeda Farm, Terenos, MS, Brazil. Soil, roots and plant aerial part were harvest with ten replications each, in one square meter randomized sets encompassing three treatments: Good, Intermediary and Bad, visually characterized, considering the percentage of green material. P. brachyurus and P. zeae density were evaluated in soil and plant roots. Dry matter of green, dead and re-growth materials, plant nutritional status and forage quality were assessed in the aerial plant part. Soil fertility was determined in all harvested samples. Both nematode species were identified from all samples, with a larger numbe in the roots (between 87-311 P. brachyurus and 1-61 P. zeae.10 g-1) than in the soil (0-8 P. brachyurus and 1-39 P. zeae.200 cm-3), however, no significant differences were found in the number of specimens between treatments. Considering that these forage species are perennial and host Pratylenchus spp, there is a tendency to increase the population of these pathogens over time, becoming a serious phytosanitary problem.Laboratório de Fitopatologia Embrapa Gado de Corte, BR 262 Km 4, Caixa Postal 154, 79002-970, Campo Grande, Mato Grosso do SulDepartamento de Fitossanidade Universidade Estadual Paulista Júlio de Mesquita Filho, Via de acesso Paulo Donato Castellane s/n, 14884-900, Jaboticabal, São PauloDepartamento de Fitossanidade Universidade Estadual Paulista Júlio de Mesquita Filho, Via de acesso Paulo Donato Castellane s/n, 14884-900, Jaboticabal, São Paul
Prisoners of the Capitalist Machine: Captivity and the Corporate Engineer
This chapter will focus on how engineering practice is conditioned by an economic system which promotes production for profit and economic growth as an end in itself. As such it will focus on the notion of the captivity of engineering which emanates from features of the economic system. By drawing on Critical Realism and a Marxist literature, and by focusing on the issues of safety and sustainability (in particular the issue of climate change), it will examine the extent to which disasters and workplace accidents result from the economic imperative for profitable production and how efforts by engineers to address climate change are undermined by an on-going commitment to growth. It will conclude by arguing that the structural constraints on engineering practice require new approaches to teaching engineers about ethics and social responsibility. It will argue that Critical Realism offers a framework for the teaching of engineering ethics which would pay proper attention to the structural context of engineers work without eliminating the possibility of engineers working for radical change
Measurement of matric suction using tensiometric and axis translation techniques
Experimental equipment for the measurement of matric suction in unsaturated soils using hydraulic tensiometers and the axis translation technique share a common working principle; that is, the measurement of a pressure differential across a high air entry porous ceramic. In this paper, the current state of the art in these two suction measurement techniques is presented and discussed together with the underlying physics thereby giving the reader the necessary basis to use and interpret the results obtained from those two techniques
- …
