1,004 research outputs found

    Glutamine-enriched enteral nutrition in very low birth weight infants. Design of a double-blind randomised controlled trial [ISRCTN73254583]

    Get PDF
    BACKGROUND: Enteral feeding of very low birth weight (VLBW) infants is a challenge, since metabolic demands are high and administration of enteral nutrition is limited by immaturity of the gastrointestinal tract. The amino acid glutamine plays an important role in maintaining functional integrity of the gut. In addition, glutamine is utilised at a high rate by cells of the immune system. In critically ill patients, glutamine is considered a conditionally essential amino acid. VLBW infants may be especially susceptible to glutamine depletion as nutritional supply of glutamine is limited in the first weeks after birth. Glutamine depletion has negative effects on functional integrity of the gut and leads to immunosuppression. This double-blind randomised controlled trial is designed to investigate the effect of glutamine-enriched enteral nutrition on feeding tolerance, infectious morbidity and short-term outcome in VLBW infants. Furthermore, an attempt is made to elucidate the role of glutamine in postnatal adaptation of the gut and modulation of the immune response. METHODS: VLBW infants (gestational age <32 weeks and/or birth weight <1500 g) are randomly allocated to receive enteral glutamine supplementation (0.3 g/kg/day) or isonitrogenous placebo supplementation between day 3 and 30 of life. Primary outcome is time to full enteral feeding (defined as a feeding volume ≥ 120 mL/kg/day). Furthermore, incidence of serious infections and short-term outcome are evaluated. The effect of glutamine on postnatal adaptation of the gut is investigated by measuring intestinal permeability and determining faecal microflora. The role of glutamine in modulation of the immune response is investigated by determining plasma Th1/Th2 cytokine concentrations following in vitro whole blood stimulation

    Examining links between anxiety, reinvestment and walking when talking by older adults during adaptive gait

    Get PDF
    Falls by older adults often result in reduced quality of life and debilitating fear of further falls. Stopping walking when talking (SWWT) is a significant predictor of future falls by older adults and is thought to reflect age-related increases in attentional demands of walking. We examine whether SWWT is associated with use of explicit movement cues during locomotion, and evaluate if conscious control (i.e., movement specific reinvestment) is causally linked to falls-related anxiety during a complex walking task. We observed whether twenty-four older adults stopped walking when talking when asked a question during an adaptive gait task. After certain trials, participants completed a visual-spatial recall task regarding walkway features, or answered questions about their movements during the walk. In a subsequent experimental condition, participants completed the walking task under conditions of raised postural threat. Compared to a control group, participants who SWWT reported higher scores for aspects of reinvestment relating to conscious motor processing but not movement self-consciousness. The higher scores for conscious motor processing were preserved when scores representing cognitive function were included as a covariate. There were no group differences in measures of general cognitive function, visual spatial working memory or balance confidence. However, the SWWT group reported higher scores on a test of external awareness when walking, indicating allocation of attention away from task-relevant environmental features. Under conditions of increased threat, participants self-reported significantly greater state anxiety and reinvestment and displayed more accurate responses about their movements during the task. SWWT is not associated solely with age-related cognitive decline or generic increases in age-related attentional demands of walking. SWWT may be caused by competition for phonological resources of working memory associated with consciously processing motor actions and appears to be causally linked with fall-related anxiety and increased vigilance.This research was supported by The Royal Society (IE131576) and British Academy (SG132820)

    A Minimal Model of Metabolism Based Chemotaxis

    Get PDF
    Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis

    Oscillatory surface rheotaxis of swimming E. coli bacteria

    Full text link
    Bacterial contamination of biological conducts, catheters or water resources is a major threat to public health and can be amplified by the ability of bacteria to swim upstream. The mechanisms of this rheotaxis, the reorientation with respect to flow gradients, often in complex and confined environments, are still poorly understood. Here, we follow individual E. coli bacteria swimming at surfaces under shear flow with two complementary experimental assays, based on 3D Lagrangian tracking and fluorescent flagellar labelling and we develop a theoretical model for their rheotactic motion. Three transitions are identified with increasing shear rate: Above a first critical shear rate, bacteria shift to swimming upstream. After a second threshold, we report the discovery of an oscillatory rheotaxis. Beyond a third transition, we further observe coexistence of rheotaxis along the positive and negative vorticity directions. A full theoretical analysis explains these regimes and predicts the corresponding critical shear rates. The predicted transitions as well as the oscillation dynamics are in good agreement with experimental observations. Our results shed new light on bacterial transport and reveal new strategies for contamination prevention.Comment: 12 pages, 5 figure

    Managing contested spaces: Public managers, obscured mechanisms and the legacy of the past in Northern Ireland

    Get PDF
    Societies emerging from ethno-political and inter-communal conflict face a range of complex problems that stem directly from the recent lived experience of bloodshed and injury, militarisation, securitisation and segregation. As institutional agents in such an environment, public managers perform the dual role of both interpreting public policy and implementing it within a politically contested space and place. In this article we address how managers cope with the outworking of ethno-nationalist conflict and peace building within government processes and policy implementation and contend this is a subject of emerging concern within the wider public administration, urban studies and conflict literature. Using data from a witness seminar initiative on the Northern Ireland conflict transformation experience, we explain how public sector managers make sense of their role in post-agreement public management and highlight the importance of three identified mechanisms; ‘bricolage’, ‘diffusion’ and ‘translation’ in the management of public sector organisations and urban spaces in a context of entrenched conflict and an uncertain path to peace

    Coevolved mutations reveal distinct architectures for two core proteins in the bacterial flagellar motor

    Get PDF
    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.JK was supported by Medical Research Council grant U117581331. SK was supported by seed funds from Lahore University of Managment Sciences (LUMS) and the Molecular Biology Consortium

    Design of a randomised controlled trial on immune effects of acidic and neutral oligosaccharides in the nutrition of preterm infants: carrot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prevention of serious infections in preterm infants is a challenge, since prematurity and low birth weight often requires many interventions and high utility of devices. Furthermore, the possibility to administer enteral nutrition is limited due to immaturity of the gastrointestinal tract in the presence of a developing immune system. In combination with delayed intestinal bacterial colonisation compared with term infants, this may increase the risk for serious infections. Acidic and neutral oligosaccharides play an important role in the development of the immune system, intestinal bacterial colonisation and functional integrity of the gut. This trial aims to determine the effect of enteral supplementation of acidic and neutral oligosaccharides on infectious morbidity (primary outcome), immune response to immunizations, feeding tolerance and short-term and long-term outcome in preterm infants. In addition, an attempt is made to elucidate the role of acidic and neutral oligosaccharides in postnatal modulation of the immune response and postnatal adaptation of the gut.</p> <p>Methods/Design</p> <p>In a double-blind placebo controlled randomised trial, 120 preterm infants (gestational age <32 weeks and/or birth weight <1500 gram) are randomly allocated to receive enteral acidic and neutral oligosaccharides supplementation (20%/80%) or placebo supplementation (maltodextrin) between day 3 and 30 of life. Primary outcome is infectious morbidity (defined as the incidence of serious infections). The role of acidic and neutral oligosaccharides in modulation of the immune response is investigated by determining the immune response to DTaP-IPV-Hib(-HBV)+PCV7 immunizations, plasma cytokine concentrations, faecal Calprotectin and IL-8. The effect of enteral acidic and neutral oligosaccharides supplementation on postnatal adaptation of the gut is investigated by measuring feeding tolerance, intestinal permeability, intestinal viscosity, and determining intestinal microflora. Furthermore, short-term and long-term outcome are evaluated.</p> <p>Discussion</p> <p>Especially preterm infants, who are at increased risk for serious infections, may benefit from supplementation of prebiotics. Most studies with prebiotics only focus on the colonisation of the intestinal microflora. However, the pathways how prebiotics may influence the immune system are not yet fully understood. Studying the immune modulatory effects is complex because of the multicausal risk of infections in preterm infants. The combination of neutral oligosaccharides with acidic oligosaccharides may have an increased beneficial effect on the immune system. Increased insight in the effects of prebiotics on the developing immune system may help to decrease the (infectious) morbidity and mortality in preterm infants.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN16211826.</p

    A randomised controlled trial and cost-effectiveness evaluation of "booster" interventions to sustain increases in physical activity in middle-aged adults in deprived urban neighbourhoods

    Get PDF
    Background: Systematic reviews have identified a range of brief interventions which increase physical activity in previously sedentary people. There is an absence of evidence about whether follow up beyond three months can maintain long term physical activity. This study assesses whether it is worth providing motivational interviews, three months after giving initial advice, to those who have become more active. Methods/Design: Study candidates (n = 1500) will initially be given an interactive DVD and receive two telephone follow ups at monthly intervals checking on receipt and use of the DVD. Only those that have increased their physical activity after three months (n = 600) will be randomised into the study. These participants will receive either a "mini booster" (n = 200), "full booster" (n = 200) or no booster (n = 200). The "mini booster" consists of two telephone calls one month apart to discuss physical activity and maintenance strategies. The "full booster" consists of a face-to-face meeting with the facilitator at the same intervals. The purpose of these booster sessions is to help the individual maintain their increase in physical activity. Differences in physical activity, quality of life and costs associated with the booster interventions, will be measured three and nine months from randomisation. The research will be conducted in 20 of the most deprived neighbourhoods in Sheffield, which have large, ethnically diverse populations, high levels of economic deprivation, low levels of physical activity, poorer health and shorter life expectancy. Participants will be recruited through general practices and community groups, as well as by postal invitation, to ensure the participation of minority ethnic groups and those with lower levels of literacy. Sheffield City Council and Primary Care Trust fund a range of facilities and activities to promote physical activity and variations in access to these between neighbourhoods will make it possible to examine whether the effectiveness of the intervention is modified by access to community facilities. A one-year integrated feasibility study will confirm that recruitment targets are achievable based on a 10% sample.Discussion: The choice of study population, study interventions, brief intervention preceding the study, and outcome measure are discussed
    corecore