13,045 research outputs found
A digital computer simulation and study of a direct-energy-transfer power-conditioning system
A digital computer simulation technique, which can be used to study such composite power-conditioning systems, was applied to a spacecraft direct-energy-transfer power-processing system. The results obtained duplicate actual system performance with considerable accuracy. The validity of the approach and its usefulness in studying various aspects of system performance such as steady-state characteristics and transient responses to severely varying operating conditions are demonstrated experimentally
Transcriptional repression by ApiAP2 factors is central to chronic toxoplasmosis
Tachyzoite to bradyzoite development in Toxoplasma is marked by major changes in gene expression resulting in a parasite that expresses a new repertoire of surface antigens hidden inside a modified parasitophorous vacuole called the tissue cyst. The factors that control this important life cycle transition are not well understood. Here we describe an important transcriptional repressor mechanism controlling bradyzoite differentiation that operates in the tachyzoite stage. The ApiAP2 factor, AP2IV-4, is a nuclear factor dynamically expressed in late S phase through mitosis/cytokinesis of the tachyzoite cell cycle. Remarkably, deletion of the AP2IV-4 locus resulted in the expression of a subset of bradyzoite-specific proteins in replicating tachyzoites that included tissue cyst wall components BPK1, MCP4, CST1 and the surface antigen SRS9. In the murine animal model, the mis-timing of bradyzoite antigens in tachyzoites lacking AP2IV-4 caused a potent inflammatory monocyte immune response that effectively eliminated this parasite and prevented tissue cyst formation in mouse brain tissue. Altogether, these results indicate that suppression of bradyzoite antigens by AP2IV-4 during acute infection is required for Toxoplasma to successfully establish a chronic infection in the immune-competent host
Short-scale turbulent fluctuations driven by the electron-temperature gradient in the national spherical torus experiment
Measurements with coherent scattering of electromagnetic waves in plasmas of the National Spherical Torus Experiment indicate the existence of turbulent fluctuations in the range of wave numbers k(perpendicular to)rho(e)=0.1-0.4, corresponding to a turbulence scale length nearly equal to the collisionless skin depth. Experimental observations and agreement with numerical results from a linear gyrokinetic stability code support the conjecture that the observed turbulence is driven by the electron-temperature gradient.X1155sciescopu
Advanced methodologies for design of storm sewer systems
This report describes the development of a series of computer models capable of determining the diameter, slope and crown elevations of each sewer in a storm drainage system in which the layout and manhole locations are predetermined. The criterion for design decisions is the generation of a least-cost system. The basis for all of the models is the application of discrete differential dynamic programing (DDDP) as the optimization tool. Two important concepts are introduced as optimal model components: hydrograph routing and risks and uncertainties in designs. Three routing procedures are adopted, each with its own advantages. Expected flood damage costs are evaluated through the analysis of numerous risks and uncertainties associated with the design. This analysis permits the estimation of the probability of exceeding the capacity and the corresponding expected assessed damage of any sewer in the system. The expected damage cost is added to the installation cost to obtain the total cost which is then minimized in the DDDP procedure. Two example sewer systems are used as a basis for illustrating different aspects of the various least-cost design models and developing user guidelines.U.S. Department of the InteriorU.S. Geological SurveyOpe
Fast-response free-running frequency-stabilized dc-to-dc converter employing a state plane-trajectory control law
Implementations of a state-plane-trajectory control law for energy storage dc-to-dc converters are presented. Performance characteristics of experimental voltage step-up converter systems employing these implementations are reported and compared to theoretical predictions
Controlling the accuracy of the density matrix renormalization group method: The Dynamical Block State Selection approach
We have applied the momentum space version of the Density Matrix
Renormalization Group method (-DMRG) in quantum chemistry in order to study
the accuracy of the algorithm in the new context. We have shown numerically
that it is possible to determine the desired accuracy of the method in advance
of the calculations by dynamically controlling the truncation error and the
number of block states using a novel protocol which we dubbed Dynamical Block
State Selection (DBSS). The relationship between the real error and truncation
error has been studied as a function of the number of orbitals and the fraction
of filled orbitals. We have calculated the ground state of the molecules
CH, HO, and F as well as the first excited state of CH. Our
largest calculations were carried out with 57 orbitals, the largest number of
block states was 1500--2000, and the largest dimensions of the Hilbert space of
the superblock configuration was 800.000--1.200.000.Comment: 12 page
NASA biomedical applications team. Applications of aerospace technology in biology and medicine
The use of a bipolar donor-recipient model of medical technology transfer is presented. That methodology is designed to: (1) identify medical problems and aerospace technology that in combination constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on aerospace technology. Problem descriptions and activity reports and the results of a market study on the tissue freezing device are presented
Revised Relativistic Hydrodynamical Model for Neutron-Star Binaries
We report on numerical results from a revised hydrodynamic simulation of
binary neutron-star orbits near merger. We find that the correction recently
identified by Flanagan significantly reduces but does not eliminate the
neutron-star compression effect. Although results of the revised simulations
show that the compression is reduced for a given total orbital angular
momentum, the inner most stable circular orbit moves to closer separation
distances. At these closer orbits significant compression and even collapse is
still possible prior to merger for a sufficiently soft EOS. The reduced
compression in the corrected simulation is consistent with other recent studies
of rigid irrotational binaries in quasiequilibrium in which the compression
effect is observed to be small. Another significant effect of this correction
is that the derived binary orbital frequencies are now in closer agreement with
post-Newtonian expectations.Comment: Submitted to Phys. Rev.
Initial data for Einstein's equations with superposed gravitational waves
A method is presented to construct initial data for Einstein's equations as a
superposition of a gravitational wave perturbation on an arbitrary stationary
background spacetime. The method combines the conformal thin sandwich formalism
with linear gravitational waves, and allows detailed control over
characteristics of the superposed gravitational wave like shape, location and
propagation direction. It is furthermore fully covariant with respect to
spatial coordinate changes and allows for very large amplitude of the
gravitational wave.Comment: Version accepted by PRD; added convergence plots, expanded
discussion. 9 pages, 9 figure
Parallelization of Kinetic Theory Simulations
Numerical studies of shock waves in large scale systems via kinetic
simulations with millions of particles are too computationally demanding to be
processed in serial. In this work we focus on optimizing the parallel
performance of a kinetic Monte Carlo code for astrophysical simulations such as
core-collapse supernovae. Our goal is to attain a flexible program that scales
well with the architecture of modern supercomputers. This approach requires a
hybrid model of programming that combines a message passing interface (MPI)
with a multithreading model (OpenMP) in C++. We report on our approach to
implement the hybrid design into the kinetic code and show first results which
demonstrate a significant gain in performance when many processors are applied.Comment: 10 pages, 3 figures, conference proceeding
- …