2,401 research outputs found

    Inventory of ammonia emissions from UK agriculture 2009

    Get PDF
    The National Ammonia Reduction Strategy Evaluation System (NARSES) model (spreadsheet version) was used to estimate ammonia (NH3) emissions from UK agriculture for the year 2009. Year-specific livestock numbers and fertiliser N use were added for 2009 and revised for previous years. The estimate for 2009 was 231.8 kt NH3, representing a 2.3 kt increase from the previously submitted estimate for 2008. Backward and forward projections using the 2009 model structure gave estimates of 317, 245 and 244 kt NH3 for the years 1990, 2010 and 2020, respectively. This inventory reports emission from livestock agriculture and from nitrogen fertilisers applied to agricultural land. There are a number of other minor sources reported as ‘agriculture’ in the total UK emission inventory, including horses not kept on agricultural holdings, emissions from composting and domestic fertiliser use

    Evaluation of normal findings using a detailed and focused technique for transcutaneous abdominal ultrasonography in the horse

    Get PDF
    Background Ultrasonography is an important diagnostic tool in the investigation of abdominal disease in the horse. Several factors may affect the ability to image different structures within the abdomen. The aim of the study was to describe the repeatability of identification of abdominal structures in normal horses using a detailed ultrasonographic examination technique and using a focused, limited preparation technique. Methods A detailed abdominal ultrasound examination was performed in five normal horses, repeated on five occasions (total of 25 examinations). The abdomen was divided into ten different imaging sites, and structures identified in each site were recorded. Five imaging sites were then selected for a single focused ultrasound examination in 20 normal horses. Limited patient preparation was performed. Structures were recorded as ‘identified’ if ultrasonographic features could be distinguished. The location of organs and their frequency of identification were recorded. Data from both phases were analysed to determine repeatability of identification of structures in each examination (irrespective of imaging site), and for each imaging site. Results Caecum, colon, spleen, liver and right kidney were repeatably identified using the detailed technique, and had defined locations. Large colon and right kidney were identified in 100% of examinations with both techniques. Liver, spleen, caecum, duodenum and other small intestine were identified more frequently with the detailed examination. Small intestine was most frequently identified in the ventral abdomen, its identification varied markedly within and between horses, and required repeated examinations in some horses. Left kidney could not be identified in every horse using either technique. Sacculated colon was identified in all ventral sites, and was infrequently identified in dorsal sites. Conclusions Caecum, sacculated large intestine, spleen, liver and right kidney were consistently identified with both techniques. There were some normal variations which should be considered when interpreting ultrasonographic findings in clinical cases: left kidney was not always identified, sacculated colon was occasionally identified in dorsal flank sites. Multiple imaging sites and repeated examinations may be required to identify small intestine. A focused examination identified most key structures, but has some limitations compared to a detailed examination

    Effect of core cross-linking on the physical properties of poly(dimethylsiloxane)-based diblock copolymer worms prepared in silicone oil

    Get PDF
    A trithiocarbonate-capped poly(dimethylsiloxane) (PDMS) precursor is chain-extended via reversible addition–fragmentation chain transfer dispersion polymerization of 2-(dimethylamino)ethyl methacrylate (DMA) in decamethylcyclopentasiloxane (D5) silicone oil at 90 °C. For a fixed mean degree of polymerization (DP) of 66 for the PDMS steric stabilizer block, targeting core-forming PDMA block DPs of between 105 and 190 enables the preparation of either well-defined worms or vesicles at a copolymer concentration of 25% w/w. The as-synthesized linear PDMS66–PDMA100 worms exhibit thermoresponsive behavior in D5, undergoing a worm-to-sphere transition on heating to 100 °C. Variable temperature 1H NMR spectroscopy indicates that this thermal transition is driven by reversible solvent plasticization of the PDMA cores. This change in copolymer morphology is characterized by transmission electron microscopy (TEM) studies, variable temperature dynamic light scattering and small-angle X-ray scattering experiments. Oscillatory rheology studies indicate that degelation occurs at 32 °C, but shear-induced polarized light imaging measurements suggest that full conversion of worms into spheres requires significantly higher temperatures (∼110 °C). 1,2-Bis(2-iodoethoxy)ethane (BIEE) is evaluated as a cross-linker for PDMS66–PDMAx diblock copolymer nano-objects in D5. This bifunctional reagent quaternizes the tertiary amine groups on the DMA residues within the worm cores, introducing cross-links via the Menshutkin reaction. TEM studies confirm that such covalently-stabilized worms no longer undergo a worm-to-sphere transition when heated to 100 °C. Kinetic studies performed on PDMS66–PDMA176 vesicles suggest that cross-linking requires approximately 13 h at 20 °C to ensure that these nano-objects remain intact when dispersed in chloroform, which is a good solvent for both blocks. Oscillatory rheology studies of a PDMS66–PDMA100 worm gel indicated that covalent stabilization using a BIEE/DMA molar ratio of 0.15 increased its dynamic elastic modulus (G′) by almost two orders of magnitude. Furthermore, such cross-linked worms exhibit a much lower critical gelation concentration (∼2% w/w) compared to that of the linear precursor worms (∼12% w/w)

    Breastfeeding and maternal perceptions of infant sleep, settle and cry patterns in the first 9 months

    Get PDF
    This study evaluated relationships between maternal perceptions of infant sleep, settling and crying patterns and breastfeeding. A prospective observational study of 91 mothers of healthy, term infants was conducted with follow ups over 9 months after discharge from a Western Australian maternity hospital. Feeding information, sleep, settle and cry behaviours, maternal bother at infant behaviours and confidence were measured using the Sleep and Settle Questionnaire. Breastfeeding confidence was measured using the Breastfeeding Self-Efficacy Scale—Short Form. Questionnaires were administered at 2 and 6 weeks, 3, 6 and 9 months. Linear mixed models were used to assess associations between maternal bother, feeding method and infant characteristics. The feeding method was not associated with maternal bother, and cessation of breastfeeding did not result in a change in bother scores (p = 0.34). Duration of infant crying in the day, evening and night, frequency of night waking and duration of settling to sleep in the day were associated with increased bother scores. Higher breastfeeding self-efficacy and maternal confidence were associated with lower bother scores (both p < 0.01). Maternal bother is associated with infant behaviours that require parental input, but not breastfeeding status. Resources that address parental expectations regarding infant sleep while providing strategies to support maternal wellbeing and breastfeeding are needed

    Practical quantum repeaters with linear optics and double-photon guns

    Get PDF
    We show how to create practical, efficient, quantum repeaters, employing double-photon guns, for long-distance optical quantum communication. The guns create polarization-entangled photon pairs on demand. One such source might be a semiconducter quantum dot, which has the distinct advantage over parametric down-conversion that the probability of creating a photon pair is close to one, while the probability of creating multiple pairs vanishes. The swapping and purifying components are implemented by polarizing beam splitters and probabilistic optical CNOT gates.Comment: 4 pages, 4 figures ReVTe

    Influence of decreasing nutrient path length on the development of engineered cartilage

    Get PDF
    SummaryObjectiveChondrocyte-seeded agarose constructs of 4mm diameter (2.34mm thickness) develop spatially inhomogeneous material properties with stiffer outer edges and a softer central core suggesting nutrient diffusion limitations to the central construct region [Guilak F, Sah RL, Setton LA. Physical regulation of cartilage metabolism. In: Mow VC, Hayes WC, Eds. Basic Orthopaedic Biomechanics, Philadelphia 1997;179–207.]. The effects of reducing construct thickness and creating channels running through the depth of the thick constructs were examined.MethodsIn Study 1, the properties of engineered cartilage of 0.78mm (thin) or 2.34mm (thick) thickness were compared. In Study 2, a single nutrient channel (1mm diameter) was created in the middle of each thick construct. In Study 3, the effects of channels on larger 10mm diameter, thick constructs were examined.ResultsThin constructs developed superior mechanical and biochemical properties than thick constructs. The channeled constructs developed significantly higher mechanical properties vs control channel-free constructs while exhibiting similar glycosaminoglycan (GAG) and collagen content. Collagen staining suggested that channels resulted in a more uniform fibrillar network. Improvements in constructs of 10mm diameter were similarly observed.ConclusionsThis study demonstrated that more homogeneous tissue-engineered cartilage constructs with improved mechanical properties can be achieved by reducing their thickness or incorporating macroscopic nutrient channels. Our data further suggests that these macroscopic channels remain open long enough to promote this enhanced tissue development while exhibiting the potential to refill with cell elaborated matrix with additional culture time. Together with reports that <3mm defects in cartilage heal in vivo and that irregular holes are associated with clinically used osteochondral graft procedures, we anticipate that a strategy of incorporating macroscopic channels may aid the development of clinically relevant engineered cartilage with functional properties

    A Nonparametric Method for the Derivation of α/β Ratios from the Effect of Fractionated Irradiations

    Get PDF
    Multifractionation isoeffect data are commonly analysed under the assumption that cell survival determines the observed tissue or tumour response, and that it follows a linear-quadratic dose dependence. The analysis is employed to derive the α/β ratios of the linear-quadratic dose dependence, and different methods have been developed for this purpose. A common method uses the so-called Fe plot. A more complex but also more rigorous method has been introduced by Lam et al. (1979). Their method, which is based on numerical optimization procedures, is generalized and somewhat simplified in the present study. Tumour-regrowth data are used to explain the nonparametric procedure which provides α/β ratios without the need to postulate analytical expressions for the relationship between cell survival and regrowth delay

    Viscoelasticity of crystal- and bubble-bearing rhyolite melts

    Get PDF
    The effect of non-deformable inclusions on the frequency-dependent rheology of a rhyolite melt plus crystals has been investigated using a sinusoidal torsion deformation device for measurements of shear viscosity and modulus in the frequency range of 5 mHz to 20 Hz at temperatures of 750–1050°C. The relaxed shear viscosity and unrelaxed shear modulus of rhyolite magma (rhyolite melt plus crystals plus bubbles) decreases with increasing bubble content and increases with the addition of crystals. At a crystal concentration of about 45% a relaxed value of the shear viscosity is not attainable. The presence of rigid inclusions results in an imaginary component of the shear modulus that becomes more symmetrical and shifted to the low-frequency—high-temperature range with respect to that for a crystal-free melt. The slope of log(Q−1) (internal friction) as a function of the dimensionless variable log(ωτ), is unaffected in the low-temperature—high-frequency range of crystals, with Q−1 ≈ 1/(ωτ)0.5 (the same as for bubble- and crystal-free rhyolite). For the present type of suspension, the internal friction is practically constant and independent of log(ωτ) in the high-temperature—low-frequency limit (ωτ 1). The shape of the Cole-Cole diagram becomes symmetrical and can be described as a Caputo body with parameter γ ≈ 0.45, whereas for bubble-bearing and inclusion-free rhyolite melts the shape of diagram relates to the β-relaxation exponent with β ≈ 0.5. The present work demonstrates that magma may or may not follow a power-law rheology depending on the relative volume proportion between crystals and bubbles

    Dissipative Dynamics of a Josephson Junction In the Bose-Gases

    Full text link
    The dissipative dynamics of a Josephson junction in the Bose-gases is considered within the framework of the model of a tunneling Hamiltonian. The effective action which describes the dynamics of the phase difference across the junction is derived using functional integration method. The dynamic equation obtained for the phase difference across the junction is analyzed for the finite temperatures in the low frequency limit involving the radiation terms. The asymmetric case of the Bose-gases with the different order parameters is calculated as well

    Landau-Khalatnikov two-fluid hydrodynamics of a trapped Bose gas

    Full text link
    Starting from the quantum kinetic equation for the non-condensate atoms and the generalized Gross-Pitaevskii equation for the condensate, we derive the two-fluid hydrodynamic equations of a trapped Bose gas at finite temperatures. We follow the standard Chapman-Enskog procedure, starting from a solution of the kinetic equation corresponding to the complete local equilibrium between the condensate and the non-condensate components. Our hydrodynamic equations are shown to reduce to a form identical to the well-known Landau-Khalatnikov two-fluid equations, with hydrodynamic damping due to the deviation from local equilibrium. The deviation from local equilibrium within the thermal cloud gives rise to dissipation associated with shear viscosity and thermal conduction. In addition, we show that effects due to the deviation from the diffusive local equilibrium between the condensate and the non-condensate (recently considered by Zaremba, Nikuni and Griffin) can be described by four frequency-dependent second viscosity transport coefficients. We also derive explicit formulas for all the transport coefficients. These results are used to introduce two new characteristic relaxation times associated with hydrodynamic damping. These relaxation times give the rate at which local equilibrium is reached and hence determine whether one is in the two-fluid hydrodynamic region.Comment: 26 pages, 3 postscript figures, submitted to PR
    • …
    corecore