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Multifractionation isoeffect data are commonly analysed under the assumption
that cell survival determines the observed tissue or tumour response, and that it
follows a linear-quadratic dose dependence. The analysis is employed to derive
the a/B ratios of the linear-quadratic dose dependence, and different methods
have been developed for this purpose. A common method uses the so-called F,
plot. A more complex but also more rigorous method has been introduced by
Lam et al. (1979). Their method, which is based on numerical optimization
procedures, is generalized and somewhat simplified in the present study.
Tumour-regrowth data are used to explain the nonparametric procedure which
provides a/f ratios without the need to postulate analytical expressions for the
relationship between cell survival and regrowth delay.

1. Introduction

Two recent experimental studies (Guttenberger et al. 1990, Kummermehr
unpublished) deal with the regrowth delay in different experimental tumour
systems after fractionated X-ray exposures. The data were used to derive a/f ratios
for the underlying dose dependence of cell survival and, in one study, also to analyse
recovery kinetics of sublethal damage. The method of analysis was based on the
same postulates as earlier treatments that employed the so-called F, plots of the
inverse of the total dose versus dose per fraction (Douglas and Fowler 1976), but
the numerical procedures were different, in being a generalization of the optimiz-
ation method introduced by Lam et al. (1979). This method, which has found a
number of applications (Douglas et al. 1979, Henkelman et al. 1980), offers
substantial advantages over the use of the F, plots. That it is not yet in general use
may be due to its requirement of a special, although fairly elementary, computer
code and—perhaps primarily—to a certain lack of transparency that is inherent in
optimization procedures involving a number of free parameters. In our analysis we
have therefore utilized as intermediate step a nonparametric approach which
provides an estimate of the «ff ratio without the need to estimate further
parameters. Although the method has been applied to more complex data (Gutten-
berger et al. 1990), it will here be explained for the simple case of complete
recovery. In the appendix it is shown that the nonparametric method can be
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extended to estimate two parameters in the more complex case of incomplete
recovery.

The analysis of regrowth delay is, in its simple form, based on the usual two-fold
assumption:

1. Repair of sublethal damage between the individual exposures is complete,
and the surviving fractions of the tumour cells for equal absorbed doses, d, are equal
and follow the same linear-quadratic dependence on dose. The overall surviving
fraction, S, after a fractionated exposure is then given by the relation:

—In S=n(ad+ pd?) (1)
or
_In§ a D
BB n

where d is the dose per fraction, 7 is the number of fractions, and D =nd is the total
dose; aff is the ‘crossover dose’, i.e. the dose where the linear component in the
survival relation equals the quadratic component.

2. The duration of regrowth, 7, of a tumour to a specified size is related to cell
survival and, therefore, implicitly dependent on the same expression, x, in dose and
number of fractions that determines cell survival:

2
t=1(x), with x=n(ot/ﬁd+d2)=ac/ﬂD+D7 (2)

The quantity, x, which is assumed to be proportional to the logarithm of cell survival
and which depends on dose and number of fractions, is termed the ‘dose meta-
meter’. The functional dependence between x and the observed effect, 1, is called
the ‘link function’.

As emphasized in contributions to the problem (Tucker 1984, Thames 1985), it
is difficult to assess the validity of the above postulates on the basis of data sets from
individual studies. Accordingly such an assessment was not attempted in the
preceding articles, and it is also not the subject of this report. The earlier
investigations (see Williams et al. 1985) will, instead, be accepted as sufficient
evidence that the postulates in Equations (1) and (2) apply to the experimental
conditions described in the next section. The subsequent considerations thus deal
with the derivation of the a/f ratios and of the functional dependence 7(x) under the
assumed validity of the postulates.

For the biological endpoint considered here, i.e. the regrowth delay of a tumour,
the functional dependence 7(x) and the a/f ratio are unknown. The familiar method
to derive a/f, the so-called F, plot of the inverse of the total dose versus dose per
fraction of, permits an estimation of a/f without the need to assume or determine
the underlying dependence, t(x). The method is attractively simple, but it suffers
from the disadvantage of necessitating somewhat uncertain interpolations between
actual data points to obtain isoeffect doses. Accordingly it utilizes only part of the
observed data (Taylor and Kim 1989). This restriction can substantially reduce the
value of the experimental data. A more general procedure is therefore desirable that
permits the derivation of the function t(x) and the «/f ratio by a simultaneous fit to
the entire data set for a tumour. The simultaneous fit is, in the method of Lam et al.
(1979), obtained by numerical optimization with a postulated analytical expression
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for ©(x) (Lam et al. use the notation G and F instead of 7(x) and x). This is a valid
approach, but it is subject to the possible bias that results from the choice of the
analytical expression. Such bias can be avoided by a nonparametric method that
obviates the need to select an analytical expression for 7(x). The nonparametric
method has the advantage of computational simplicity, and it can either be used by
itself or as an intermediate step that provides the necessary guidance for the
selection of appropriate functional forms of 7(x) to be employed in a parametric fit.

2. Materials and methods

Three established transplantable tumours of different histology are used to
illustrate the method of analysis. The tumour systems, the experimental procedure
to transplant the tumour cells, and the irradiation procedures are described
elsewhere (Guttenberger et al. 1990). A brief summary of the experimental
methods and the conditions of irradiations will therefore be sufficient in the present
context.

Tumours were transplanted to 8-10-week-old inbred female C3H mice (colony
Neuherberg) as 1 mm? fragments by trocar into the subcutaneous tissue of the right
flank under hexobarbital anaesthesia. When they had reached 80-150 mg they were
allocated to treatment groups. Six to 12 mice were included in each dose group, and
three or four dose levels were used for each fractionation pattern. The tumours
were locally irradiated with 300kV X-rays at a dose rate of 4-6-5-7 Gy/min. The
mice were anaesthesized and the tumours were clamped 5min prior to and
throughout irradiation to ensure local hypoxia. To minimize dose inhomogeneities
the mice were placed on a revolving plate (1 rev/min).

Doses were monitored during irradiation with an ionization chamber placed in
one of the exposure positions on the revolving plate. The doses were delivered at
intervals of approximately 8 h in one, two, four or eight equal fractions. Following
irradiation the tumour mass was measured regularly once to three times a week,
according to the growth rate, until a predetermined size (two to five times the pre-
treatment size) was reached. The measurements employed a Perspex ruler contain-
ing a series of boreholes of increasing diameter, calibrated for tumour mass.

For the analysis the tumour size was normalized to its value at the start of
irradiation, and an individual growth curve was plotted for each tumour. The time
after treatment to grow to a specified size was estimated from this curve. The
absence of a tumour-bed effect was also checked from these individual curves.

3. Method of analysis
3.1. A mimimization of ‘inversions’

Figure 1 contains diagrams of the experimental data for the three tumour
systems. Each data set consists of K observed regrowth delays, 7, (k=1, 2, ..., K),
for different combinations, D, and #,, of total dose and number of fractions. The
regrowth delay, 7, is the difference between the times needed by the exposed and
unexposed tumours to reach the specified size. The growth times, t,, for the
unirradiated tumours were taken from previous tumour growth measurements;
they are assigned the values 10, 9-5, and 6 days for the mammary carcinoma, the
Harding Passey melanoma, and the fibrosarcoma. Imprecisions of these values are
irrelevant to the nonparametric analysis, and they are not highly critical to the
parametric analysis.
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Figure 1. Regrowth delays for three tumour systems. In each experiment four fractionation
protocols (one, two, four or eight fractions) were used with equal intervals between
fractions (8 h). The curves result from a fit to the data according to Equations (6) and

(2).
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Figure 2. Relation between the observed regrowth delays and the dose metameters for an
a/B ratio that is too large (a/f=400 Gy, upper panel) or too small (¢/f=0, lower
panel).

Assuming a certain value a/f, one obtains from the experimental data K pairs of
metameter values, x, = a/BD, + D?/n,, and observed regrowth delays, t,. If the two
basic postulates were fulfilled, and if the assumed o/f ratio were equal or nearly
equal to the true value, one would obtain a set of points (xy, 7,) in the (x, 7)-plane
that is close to the actual relationship, t(x), between regrowth delay and the
metameter x=a/BD+ D?/n. For a wrong value o/ one would expect a less
consistent dependence, i.e. a larger ‘scatter’ among the set of points (xy, 7;).

As a heuristic step, not as a necessary part of the analysis, one may first consider
the (x,, t,) diagrams that result from two wrong assumptions, namely from assumed
values of a/f that are either clearly too large or too small. The upper panel in Figure
2 gives for the fibrosarcoma SSK2 the diagram for «/f =400 Gy, i.e. for a nearly
linear dose dependence; the lower panel gives the diagram for a/f=0, i.e. for an
assumed purely quadratic relation. The upper panel is, apart from the factor «/ff in
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the abscissa scale, virtually equal to the corresponding diagram in Figure 1. The
salient point in Figure 2 is that both of these badly chosen a/f ratios lead to large
scatter and are therefore readily recognized as inconsistent with the data. The
multifraction data lie too low in the upper panel and too high in the lower panel; the
true model must, therefore be in between the two limits, i.e. it must be a linear-
quadratic expression with some intermediate value a/f. The more consistent
relation obtained with a suitable estimate of a/f will be given below (see Figure 4).

To derive the correct a/ff, one must search for the value that yields the (x,, 7,)
diagram with the least degree of scatter. This requires a measure for the extent of
the scatter of the points around a common monotone dependence. One possible
choice is the Spearman rank correlation coefficient which has been used in the
analysis of similar data (Maciejewski et al. 1989, Vegesna et al. 1989). Another
simple and meaningful, if somewhat arbitrary, measure is the number, I, of
‘inversions’, i.e. the number of combinations with x; <x; and 7,> ;. Such combin-
ations should not occur, except for statistical fluctuations and experimental inaccur-
acies. In the example of Figure 2, one has 32 inversions for the linear model and 34
inversions for the quadratic model; the number of resulting inversions is consider-
ably smaller for intermediate values of o/f.

The use of the number of inversions to estimate parameters in generalized linear
models has been proposed by Han (1987). As he points out, it is based on the
Kendall rank correlation coefficient which is, like the Spearman rank correlation
coefficient, a measure of correlation between two variables when their functional
dependency is unknown.

The simple counting of inversions would be an acceptable procedure, if the
variables x and T were measured only on an ordinal scale. But here one can sharpen
the analysis by giving suitably chosen weights to the inversions. One weight factor
that suggests itself is the square, (rj—tk)z/(af+af), of the negative difference
between the regrowth durations; the denominator in this expression accounts for
the standard errors, ¢; and g,, of the observed regrowth delays t; and 7, which are
mean values of several measurements. One could also use the data from individual
animals, and would then merely use the term (‘rj—‘l:,‘)2 in the weight factor.

An added plausible term in the weight factor is the square, (xj——xk)z/a'c, of the
difference between the arguments; it reflects the condition that the (positive)
difference (7, —1;) between regrowth delays should be largest for large differences
(x;j—x,), and that, accordingly, inversions should be less likely for large values of
(x;—x). The term x is the average of all values x, (k=1, ..., K); it is included to
avoid the artefact, that the weight factors increase with increasing a/f§ ratios merely
because the values x; increase. This would bias the a/f estimates toward smaller
values.

With the above choice of the weight factors one utilizes, instead of the number
of inversions, a sum of weighted squares, S, over the I inversions (j, k), i.e. the
combinations with x;<x, and 7;>1;:

(1= 1) (x;— )
S — J J _ (3)
! (j'z,() ol+of  x?
with:
o D? 1 X
xk:BDk+-—_n£ and szkg Xy (4)
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The dependence of the parameter S; on the aff ratio can now serve—without the
need to employ an optimization algorithm—to derive estimates of the a/f ratios for
the different tumour systems. Figure 3 represents in three panels the resulting
parameters S;. Logarithmic scales of #/f and of S| are used to give the dependences
over wide ranges from small to large a/f ratios.

The minimal values S, result for all tumours at a/f ratios close to 30 Gy. These
values are in good agreement with a/f ratios estimated for these largely hypoxic
tumour systems in earlier studies (see Kummermehr et al. 1984). The resulting
(%, T,) diagrams are given in the three panels of Figure 4. There is some remaining
degree of scatter, but it lies within the range of standard errors of the observed
regrowth delays, and there is now—in contrast to the example in Figure 2—no
indication of a systematic trend of the differences between small and large numbers
of fractions.

The parameter S} chosen for this analysis is, of course, somewhat arbitrary, and
one could select other parameters which might produce further slight improve-
ments in the estimated a/f ratios. The choice is, however, justified by the coherent
dependences 1(x) (plotted in Figure 4) for different fraction numbers. The
advantage of the approach is its comparative simplicity and transparency, and the
absence of a bias arising from the untested assumption of an analytical expression,
such as a power function, for the unknown dependence 7(x).

A disadvantage of the approach is the difficulty to provide standard errors of the
estimated ratios a/f. In the absence of a rigorous expression for the standard error
of the parameter a/f, one uses a nonparametric procedure, the bootstrap method, to
estimate the standard errors. The method has been shown (see e.g. Efron 1979,
1982) to be applicable in almost any nonparametric estimation problem and to give,
under reasonable conditions, results which are asymptotically correct. The boot-
strap method is used here to estimate not only the standard errors but also the bias
of the estimated parameters a/f.

In the actual calculations modified data sets are repeatedly generated, i.e.
regrowth-delay values are replicated from normal distributions with means and
standard deviations equal to the experimentally observed means, 7;, and the
standard deviations, ¢;. For each of the simulated data sets one derives a value a/ff
by the nonparametric estimation procedure, and from a sufficient number of data
sets the ‘bootstrap distribution’ of the parameter a/f and ‘the bootstrap estimate’ of
the standard error are obtained. In the computations it was sufficient to generate
100 data sets.

Similar computations have been performed in terms of the simple unweighted
number of inversions. The resulting estimates and the standard errors are given in
the intermediate panel of Table 1. One notes that the estimates based on the
weighted statistics are more efficient, i.e. that they have smaller standard errors.

The efficiency of the estimate is not the only relevant aspect; one needs to ask
also for a possible bias. Han (1987) has shown that his ‘maximum rank-correlation
estimator’—which is largely analogous to the estimator based on the simple number
of inversions—is unbiased under fairly broad conditions. However, these condi-
tions include the requirement that the independent variables, i.e. in the present case
the doses and the number of fractions, are random variables with a known
distribution. This condition is not met in our data, where the doses and the fraction
numbers in the experiments were chosen according to judgement. The bootstrap
procedure has therefore been modified to assess the magnitude of a possible bias.
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Table 1. Nonparametric estimates of the a/f-ratios and standard errors

Estimates based on the weighted function, S,
HP III-5: o/ (Gy)=31-9 (+11:3)
AT17: =299 (+47)
SSK2: =319(+67)

Estimates based on unweighted number of inversions, 1
HP III-5: o/B (Gy)=38-5 (£ 20-4)
AT17: =292 (£11-2)
SSK2: =319 (+12:6)

Bootstrap estimate of the a/ff ratios based on the function
S; and on assumed values 31-9 Gy, 29-9 Gy, and 31-9 Gy.
HP I1I-5: «/f (Gy)=389 (£ 10:7)
AT17: =306 (+5-3)
SSK2: =323(+£59)

All standard errors are obtained by the bootstrap method.

In the modified procedure the same doses and numbers of fractions, and the
same variances of the regrowth delays, are utilized as in the original data, but the
mean values of the regrowth delays are replaced by the exact values which result
when the relations in Figure 4 are approximated by straight lines. An unbiased
estimator should then, on the average, produce the values of a/f tabulated in the top
panel of Table 1. In reality one obtains the mean values and the standard errors
which are given in the bottom panel of Table 1. One recognizes that there is bias,
and that it depends on the characteristics of the data set. As seen in further
calculations, the estimated value can be either too small or too large. The
magnitudes of the bias are, however, generally smaller than the standard errors.
The bias is comparable to the standard error only in the case of the Harding Passey
melanoma, but this may merely reflect the fact that these data are, at the higher
doses, subject to large statistical errors. One concludes that the nonparametric
estimation is biased, but that the bias does not systematically lead to over- or
underestimation of the a/f ratios, and that it appears to be minor compared to the
standard error.

3.2. Parametric least-squares solution

The diagrams in Figure 4 suggest fairly simple link functions, t(x), and it is
therefore of interest to examine parametric fits. Three different models were
tentatively employed, to find the least-squares solutions to the data in terms of the
relation between the regrowth delay, t, and the metameter x=o/BfD + D?/n. The
three models were:

1. a linear relation

T=cx (5)
2. a more general power function

T=cx" (6)
3. alinear-quadratic relation

T=c,x +cyx? (7)



Derivation of a/f ratios 1263

Relation (5) has two free parameters, o/ and c; relations (6) and (7) contain three
free parameters.
The parameters are estimated from a weighted least-squares fit:

K
Y. (%—1(x)?*/of =min (8)
k=1
%, are the observed regrowth delays, and 7(x;) are the values from Equations (5)—(7);
o, are the standard deviations of the observed values 7.

Equation (5) is not a linear expression in its two parameters a/f and c. However,
one can use the two parameters ca/f§ and ¢, and then the estimates can be obtained
directly using a linear least-squares fitting. For the other equations one needs
simple nonlinear optimization algorithms.

A purely linear link function t(x) leads, as seen from Table 1, to fits with
excessive sums of squares; it must therefore be rejected. The two other models lead
to fits of about equal quality. The choice between the two models is, however,
uncritical; the resulting values, a/f}, are, as seen in Table 2, virtually the same. In
Figure 5 the data pairs (x,, 7,) are compared to the values 7(x) resulting from the
power-function model. The solid lines in Figure 1 correspond to the same solution,
i.e. they represent the regrowth delays according to Equation (6) with the
parameters given in Table 2.

4. Conclusion

The nonparametric method to analyse the effects of fractionated exposures on
tumours or on normal tissues is largely analogous to the method of Lam et al.
(1979), but it requires no a priori assumption on the relation between cell depletion
and the observed endpoint. The numerical procedure is simple and needs no
optimization algorithm. It has here been applied under the familiar assumption of a
linear-quadratic dependence for cell survival and provides the estimates of the a/f
ratios. The method is, however, equally applicable, if other dose dependencies are
assumed.

The nonparametric algorithm is particularly suitable for the estimation of a
single parameter, but it can also be used for more complex data. The appendix
exemplifies this in terms of tumour-regrowth data for exposures with incomplete
recovery between fractions.

Appendix: Extension of the nonparametric method

The nonparametric method can be extended to the more complex situation of
exposures with incomplete recovery between fractions.

Guttenberger et al. (1990) have used regrowth-delay data for several tumour
systems, to analyse the kinetics of recovery from sublethal damage. They employed
the parametric optimization method. We will here exemplify the application of the
nonparametric method to the same experimental data.

If there is incomplete recovery between fractions, one obtains, instead of
Equation (2), a relation that contains contributions to the quadratic term due to any
pair among the 7n fractions. One usually assumes that the ‘sublethal’ damage
decreases exponentially in time; with an assumed recovery time ¢, (time for decay of



Table 2.
(a) Linear model: 1=cx with x=a/fD+ D?|n

Estimate of the «/f ratios with analytical expressions

a/B (Gy) ¢ (day Gy~ %) Sum of squares
HP III-5 241 (10-7) 0:018  (0-004) 21-3
AT 17 27-5  (7-4) 0-027  (0-005) 17-5
SSK2 227 (7-0) 0-0063 (0-0011) 28-3
(b) Power model: t=cx?

a/B (Gy) 4 p Sum of squares
HP III-5 350 (4'5) 302x107% (44x107°) 2:06 (0-17) 4-31
AT 17 306 (3-2) 6:65x107% (5:3x107%) 1-47 (0-1) 5-41
SSK2 279 (29) 83 x107% (58x107%) 1-54  (0-09) 7-68
(c) Linear quadratic model: T=¢,x+ c,x?

a/f (Gy) ¢, (days Gy ™) ¢, (days Gy~ ?) Sum of squares
HP III-5 349 (41) 0 (26 x1073) 50 x107% (1-0 x1079) 432
AT 17 307 (3-2) 1:31x1072  (0-28x1072) 523x107% (12 x1079) 5-61
SSK2 283 (3-5) 248x1073 (06 x1073) 1-21x107%  (0-22x1079) 7-36

Standard errors are in parentheses.
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Figure 5. Regrowth delays, 1, versus the dose metameter x, =a/BD, + D?[n, . The values of
o/p are derived from a least squares fit to Equation (6).
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the damage to decrease to 1/e of its initial value) and with the time interval At
between fractions this leads to the relation:

x=a/BD+q,(At)D?*/n (A.1)

with:

1
an(AD) =~ Y exp(—|i—k|At/ty)
ik

"ot 2(n—y)

=1+,

j=1

exp(—JAt/ty)

gq(At) equals 1 for At>1¢,, i.e. for complete recovery, and n for At=0, i.e. for no
recovery between fractions. It can be shown that this relation agrees with the closed
expressions derived by Thames (1985) and also with the formulae utilized by
Kellerer and Rossi (1972).

Guttenberger et al. (1990) in their experiments used fractionated exposures with
different time intervals of 0, 20, 55, and 360 min between fractions. Their
experimental data are given in Figure Al.

Choosing the same statistics, S}, that have been described in the main text, but
using the changed metameter, one deals with a minimization problem in two
dimensions. This can still be handled without an optimization algorithm; one can
simply plot isovalue lines of S; in the plane of the two parameters o/ and ¢,. The
result, for the example of the fibrosarcoma SSK2, is represented in Figure A2. The

60
fibrosarcoma SSK2

2 time between fractions ‘
s 0
o ‘
T 40 B 20 min . )
5 A 55 P A {
o ® 360 ¢ ' A
o I :
< . 1* 5 A *
T 20} L 1
] ) i °
G ali e
)
&

O " " L

0 20 40 60 80

total dose (Gy)

Figure Al. Regrowth delays for the fibrosarcoma SSK2. Four fractions have been used
with time intervals between fractions as indicated.



Derivation of afB ratios 1267

fibrosarcoma SSK2
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Figure A2. Lines of equal values of the weighted number of inversions, S;, in the plane of
the parameters a/f and t,. The point in the centre corresponds to the minimum of .S},
i.e. to 37-3 Gy and t,=44-6 min.

minimum is obtained for a/f=37-3 Gy and t,=44-6 min, which is in good agree-
ment with the values that Guttenberger et al. (1990) have obtained by the
parametric method. The regrowth delay as a function of the more complex dose
metameter is represented in Figure A3.

60
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s 40 &0 .
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Figure A3. Regrowth delays, 7, versus the dose metameter x, = a/BD, + g,(At) X D}/n, for
the values of @/ and ¢, from Figure A2.
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The nonparametric method can, even in this more complex case, serve as a
useful intermediate step that provides guidance for the choice of an appropriate
analytical expression, 7(x), in a subsequent parametric analysis. By itself the
method is, however, less satisfactory, because it is impracticable to utilize a
bootstrap method for the derivation of standard errors; a parametric fit with an
optimization algorithm can achieve this more readily.
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