175 research outputs found
Elevated adipogenesis of marrow mesenchymal stem cells during early steroid-associated osteonecrosis development
<p>Abstract</p> <p>Background</p> <p>Increased bone marrow lipid deposition in steroid-associated osteonecrosis (ON) implies that abnormalities in fat metabolism play an important role in ON development. The increase in lipid deposition might be explained by elevated adipogenesis of marrow mesenchymal stem cells (MSCs). However, it remains unclear whether there is a close association between elevated adipogenesis and steroid-associated ON development.</p> <p>Objective</p> <p>The present study was designed to test the hypothesis that there might be a close association between elevated adipogenesis and steroid-associated ON development.</p> <p>Methods</p> <p>ON rabbit model was induced based on our established protocol. Dynamic-MRI was employed for local intra-osseous perfusion evaluation in bilateral femora. Two weeks after induction, bone marrow was harvested for evaluating the ability of adipogenic differentiation of marrow MSCs at both cellular and mRNA level involving adipogenesis-related gene peroxisome proliferator-activated receptor gamma2 (PPARγ2). The bilateral femora were dissected for examining marrow lipid deposition by quantifying fat cell number, fat cell size, lipid deposition area and ON lesions. For investigating association among adipogenesis, lipid deposition and perfusion function with regard to ON occurrence, the rabbits were divided into ON<sup>+ </sup>(with at least one ON lesion) group and ON<sup>- </sup>(without ON lesion) group. For investigating association among adipogenesis, lipid deposition and perfusion function with regard to ON extension, the ON<sup>+ </sup>rabbits were further divided into sub-single-lesion group (SON group: with one ON lesion) and sub-multiple-lesion group (MON group: with more than one ON lesion).</p> <p>Results</p> <p>Local intra-osseous perfusion index was found lower in either ON<sup>+ </sup>or MON group when compared to either ON<sup>- </sup>or SON group, whereas the marrow fat cells number and area were much larger in either ON<sup>+ </sup>or MON group as compared with ON<sup>- </sup>and SON group. The adipogenic differentiation ability of MSCs and PPARγ2 expression in either ON<sup>+ </sup>or MON group were elevated significantly as compared with either ON<sup>- </sup>or SON group.</p> <p>Conclusion</p> <p>These findings support our hypothesis that there is a close association between elevated adipogenesis and steroid-associated osteonecrosis development.</p
Nanostructured 3D Constructs Based on Chitosan and Chondroitin Sulphate Multilayers for Cartilage Tissue Engineering
Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs
Higher Infection of Dengue Virus Serotype 2 in Human Monocytes of Patients with G6PD Deficiency
The prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency is high in Asia. An ex vivo study was conducted to elucidate the association of G6PD deficiency and dengue virus (DENV) infection when many Asian countries are hyper-endemic. Human monocytes from peripheral mononuclear cells collected from 12 G6PD-deficient patients and 24 age-matched controls were infected with one of two DENV serotype 2 (DENV-2) strains–the New Guinea C strain (from a case of dengue fever) or the 16681 strain (from a case of dengue hemorrhagic fever) with a multiplicity of infection of 0.1. The infectivity of DENV-2 in human monocytes was analyzed by flow cytometry. Experimental results indicated that the monocytes of G6PD-deficient patients exhibited a greater levels of infection with DENV-2 New Guinea C strain than did those in healthy controls [mean±SD:33.6%±3.5 (27.2%∼39.2%) vs 20.3%±6.2 (8.0%∼30.4%), P<0.01]. Similar observations were made of infection with the DENV-2 16681 strain [40.9%±3.9 (35.1%∼48.9%) vs 27.4%±7.1 (12.3%∼37.1%), P<0.01]. To our knowledge, this study demonstrates for the first time higher infection of human monocytes in G6PD patients with the dengue virus, which may be important in increasing epidemiological transmission and perhaps with the potential to develop more severe cases pathogenically
Adaptive Response of a Gene Network to Environmental Changes by Fitness-Induced Attractor Selection
Cells switch between various stable genetic programs (attractors) to accommodate environmental conditions. Signal transduction machineries efficiently convey environmental changes to the gene regulation apparatus in order to express the appropriate genetic program. However, since the number of environmental conditions is much larger than that of available genetic programs so that the cell may utilize the same genetic program for a large set of conditions, it may not have evolved a signaling pathway for every environmental condition, notably those that are rarely encountered. Here we show that in the absence of signal transduction, switching to the appropriate attractor state expressing the genes that afford adaptation to the external condition can occur. In a synthetic bistable gene switch in Escherichia coli in which mutually inhibitory operons govern the expression of two genes required in two alternative nutritional environments, cells reliably selected the “adaptive attractor” driven by gene expression noise. A mathematical model suggests that the “non-adaptive attractor” is avoided because in unfavorable conditions, cellular activity is lower, which suppresses mRNA metabolism, leading to larger fluctuations in gene expression. This, in turn, renders the non-adaptive state less stable. Although attractor selection is not as efficient as signal transduction via a dedicated cascade, it is simple and robust, and may represent a primordial mechanism for adaptive responses that preceded the evolution of signaling cascades for the frequently encountered environmental changes
Survivin expression in ovarian cancer and its correlation with clinico-pathological, surgical and apoptosis-related parameters
We investigated the association of survivin expression with prognosis and other apoptosis-related biological factors in 110 primary ovarian cancer patients admitted to the Division of Gynecologic Oncology, Catholic University of Rome. Immunohistochemistry was performed on formalin-fixed, paraffin-embedded sections by using polyclonal antibody ab469 for survivin, and mouse monoclonal antibodies (clone 124 and DO-7), for bcl-2 and p53, respectively. Cytoplasmic survivin immunoreaction was observed in 84.5% cases, while nuclear survivin immunostaining was observed in 29.1% cases. We failed to find any relationship between cytoplasmic survivin positivity rate and any of the parameters examined. Serous tumours showed a lower percentage of nuclear survivin positivity with respect to other histotypes (20.5 vs 48.6%, respectively; P-value=0.004). The percentage of nuclear survivin positivity was higher in cases subjected to primary tumour cytoreduction (43.5%), with respect to patients subjected to exploratory laparotomy (20%) (P=0.024). Bcl-2 and p53 were, respectively, expressed in 27.3 and 60.0% of the cases and their expression was not correlated with survivin status. During the follow-up period, progression and death of disease were observed in 68 (61.8%) and 53 (48.2%) cases, respectively. There was no difference in time to progression and overall survival according to survivin status in ovarian cancer patients. In conclusion, in our experience, the immunohistochemical assessment of survivin status does not seem to be helpful in the prognostic characterisation of ovarian cancer. A more in depth investigation of the complex physiology of divergent survivin variants is needed in order to clarify the biological and the clinical role of differentially located survivin isoforms
Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules
Cytoplasmic dynein is a dimeric AAA+ motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions. About half the molecules have the two heads separated from one another, with both leading and trailing motors attached to the microtubule. The other half have the two heads and stalks closely superposed in a front-to-back arrangement of the AAA+ rings, suggesting specific contact between the heads. All stalks point towards the microtubule minus end. Mean stalk angles depend on the separation between their stalkheads, which allows estimation of inter-head tension. These findings provide a structural framework for understanding dynein’s directionality and unusual stepping behaviour
Noise-Driven Stem Cell and Progenitor Population Dynamics
BACKGROUND: The balance between maintenance of the stem cell state and terminal differentiation is influenced by the cellular environment. The switching between these states has long been understood as a transition between attractor states of a molecular network. Herein, stochastic fluctuations are either suppressed or can trigger the transition, but they do not actually determine the attractor states. METHODOLOGY/PRINCIPAL FINDINGS: We present a novel mathematical concept in which stem cell and progenitor population dynamics are described as a probabilistic process that arises from cell proliferation and small fluctuations in the state of differentiation. These state fluctuations reflect random transitions between different activation patterns of the underlying regulatory network. Importantly, the associated noise amplitudes are state-dependent and set by the environment. Their variability determines the attractor states, and thus actually governs population dynamics. This model quantitatively reproduces the observed dynamics of differentiation and dedifferentiation in promyelocytic precursor cells. CONCLUSIONS/SIGNIFICANCE: Consequently, state-specific noise modulation by external signals can be instrumental in controlling stem cell and progenitor population dynamics. We propose follow-up experiments for quantifying the imprinting influence of the environment on cellular noise regulation.Engineering and Applied SciencesOther Research Uni
Development of microspheres for biomedical applications: a review
An overview of microspheres manufactured for use in biomedical applications based on recent literature is presented in this review. Different types of glasses (i.e. silicate, borate, and phosphates), ceramics and polymer-based microspheres (both natural and synthetic) in the form of porous , non-porous and hollow structures that are either already in use or are currently being investigated within the biomedical area are discussed. The advantages of using microspheres in applications such as drug delivery, bone tissue engineering and regeneration, absorption and desorption of substances, kinetic release of the loaded drug components are also presented. This review also reports on the preparation and characterisation methodologies used for the manufacture of these microspheres. Finally, a brief summary of the existing challenges associated with processing these microspheres which requires further research and development are presented
Language in international business: a review and agenda for future research
A fast growing number of studies demonstrates that language diversity influences almost all management decisions in modern multinational corporations. Whereas no doubt remains about the practical importance of language, the empirical investigation and theoretical conceptualization of its complex and multifaceted effects still presents a substantial challenge. To summarize and evaluate the current state of the literature in a coherent picture informing future research, we systematically review 264 articles on language in international business.
We scrutinize the geographic distributions of data, evaluate the field’s achievements to date in terms of theories and methodologies, and summarize core findings by individual, group, firm, and country levels of analysis. For each of these dimensions, we then put forward a future research agenda. We encourage scholars to transcend disciplinary boundaries and to draw on, integrate, and test a variety of theories from disciplines such as psychology, linguistics, and neuroscience to gain a more profound understanding of language in international business. We advocate more multi-level studies and cross-national research collaborations and suggest greater attention to potential new data sources and means of analysis
- …