60 research outputs found

    Thermal counterflow in a periodic channel with solid boundaries

    Get PDF
    We perform numerical simulations of finite temperature quantum turbulence produced through thermal counterflow in superfluid 4He, using the vortex filament model. We investigate the effects of solid boundaries along one of the Cartesian directions, assuming a laminar normal fluid with a Poiseuille velocity profile, whilst varying the temperature and the normal fluid velocity. We analyze the distribution of the quantized vortices, reconnection rates, and quantized vorticity production as a function of the wall-normal direction. We find that the quantized vortex lines tend to concentrate close to the solid boundaries with their position depending only on temperature and not on the counterflow velocity. We offer an explanation of this phenomenon by considering the balance of two competing effects, namely the rate of turbulent diffusion of an isotropic tangle near the boundaries and the rate of quantized vorticity production at the center. Moreover, this yields the observed scaling of the position of the peak vortex line density with the mutual friction parameter. Finally, we provide evidence that upon the transition from laminar to turbulent normal fluid flow, there is a dramatic increase in the homogeneity of the tangle, which could be used as an indirect measure of the transition to turbulence in the normal fluid component for experiments

    Reconnection dynamics and mutual friction in quantum turbulence

    Get PDF
    We investigate the behaviour of the mutual friction force in finite temperature quantum turbulence in 4He, paying particular attention to the role of quantized vortex reconnections. Through the use of the vortex filament model, we produce three experimentally relevant types of vortex tangles in steady-state conditions, and examine through statistical analysis, how local properties of the tangle influence the mutual friction force. Finally, by monitoring reconnection events, we present evidence to indicate that vortex reconnections are the dominant mechanism for producing areas of high curvature and velocity leading to regions of high mutual friction, particularly for homogeneous and isotropic vortex tangles

    Metabolic state alters economic decision making under risk in humans

    Get PDF
    Background: Animals' attitudes to risk are profoundly influenced by metabolic state (hunger and baseline energy stores). Specifically, animals often express a preference for risky (more variable) food sources when below a metabolic reference point (hungry), and safe (less variable) food sources when sated. Circulating hormones report the status of energy reserves and acute nutrient intake to widespread targets in the central nervous system that regulate feeding behaviour, including brain regions strongly implicated in risk and reward based decision-making in humans. Despite this, physiological influences per se have not been considered previously to influence economic decisions in humans. We hypothesised that baseline metabolic reserves and alterations in metabolic state would systematically modulate decision-making and financial risk-taking in humans. Methodology/Principal Findings: We used a controlled feeding manipulation and assayed decision-making preferences across different metabolic states following a meal. To elicit risk-preference, we presented a sequence of 200 paired lotteries, subjects' task being to select their preferred option from each pair. We also measured prandial suppression of circulating acyl-ghrelin (a centrally-acting orexigenic hormone signalling acute nutrient intake), and circulating leptin levels (providing an assay of energy reserves). We show both immediate and delayed effects on risky decision-making following a meal, and that these changes correlate with an individual's baseline leptin and changes in acyl-ghrelin levels respectively. Conclusions/Significance: We show that human risk preferences are exquisitely sensitive to current metabolic state, in a direction consistent with ecological models of feeding behaviour but not predicted by normative economic theory. These substantive effects of state changes on economic decisions perhaps reflect shared evolutionarily conserved neurobiological mechanisms. We suggest that this sensitivity in human risk-preference to current metabolic state has significant implications for both real-world economic transactions and for aberrant decision-making in eating disorders and obesity

    The Toronto prehospital hypertonic resuscitation-head injury and multi organ dysfunction trial (TOPHR HIT) - Methods and data collection tools

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical trials evaluating the use of hypertonic saline in the treatment of hypovolemia and head trauma suggest no survival superiority over normal saline; however subgroup analyses suggest there may be a reduction in the inflammatory response and multiorgan failure which may lead to better survival and enhanced neurocognitive function. We describe a feasibility study of randomizing head injured patients to hypertonic saline and dextran vs. normal saline administration in the out of hospital setting.</p> <p>Methods/Design</p> <p>This feasibility study employs a randomized, placebo-controlled design evaluating normal saline compared with a single dose of 250 ml of 7.5% hypertonic saline in 6% dextran 70 in the management of traumatic brain injuries. The primary feasibility endpoints of the trial were: 1) baseline survival rates for the treatment and control group to aid in the design of a definitive multicentre trial, 2) randomization compliance rate, 3) ease of protocol implementation in the out-of-hospital setting, and 4) adverse event rate of HSD infusion.</p> <p>The secondary objectives include measuring the effect of HSD in modulating the immuno-inflammatory response to severe head injury and its effect on modulating the release of neuro-biomarkers into serum; evaluating the role of serum neuro-biomarkers in predicting patient outcome and clinical response to HSD intervention; evaluating effects of HSD on brain atrophy post-injury and neurocognitive and neuropsychological outcomes.</p> <p>Discussion</p> <p>We anticipate three aspects of the trial will present challenges to trial success; ethical demands associated with a waiver of consent trial, challenging follow up and comprehensive accurate timely data collection of patient identifiers and clinical or laboratory values. In addition all the data collection tools had to be derived de novo as none existed in the literature.</p> <p>Trial registration number</p> <p>NCT00878631</p

    Mouse genomic variation and its effect on phenotypes and gene regulation

    Get PDF
    We report genome sequences of 17 inbred strains of laboratory mice and identify almost ten times more variants than previously known. We use these genomes to explore the phylogenetic history of the laboratory mouse and to examine the functional consequences of allele-specific variation on transcript abundance, revealing that at least 12% of transcripts show a significant tissue-specific expression bias. By identifying candidate functional variants at 718 quantitative trait loci we show that the molecular nature of functional variants and their position relative to genes vary according to the effect size of the locus. These sequences provide a starting point for a new era in the functional analysis of a key model organism

    The Development and Validation of the Empathy Components Questionnaire (ECQ)

    Get PDF
    Key research suggests that empathy is a multidimensional construct comprising of both cognitive and affective components. More recent theories and research suggest even further factors within these components of empathy, including the ability to empathize with others versus the drive towards empathizing with others. While numerous self-report measures have been developed to examine empathy, none of them currently index all of these wider components together. The aim of the present research was to develop and validate the Empathy Components Questionnaire (ECQ) to measure cognitive and affective components, as well as ability and drive components within each. Study one utilized items measuring cognitive and affective empathy taken from various established questionnaires to create an initial version of the ECQ. Principal component analysis (PCA) was used to examine the underlying components of empathy within the ECQ in a sample of 101 typical adults. Results revealed a five-component model consisting of cognitive ability, cognitive drive, affective ability, affective drive, and a fifth factor assessing affective reactivity. This five-component structure was then validated and confirmed using confirmatory factor analysis (CFA) in an independent sample of 211 typical adults. Results also showed that females scored higher than males overall on the ECQ, and on specific components, which is consistent with previous findings of a female advantage on self-reported empathy. Findings also showed certain components predicted scores on an independent measure of social behavior, which provided good convergent validity of the ECQ. Together, these findings validate the newly developed ECQ as a multidimensional measure of empathy more in-line with current theories of empathy. The ECQ provides a useful new tool for quick and easy measurement of empathy and its components for research with both healthy and clinical populations

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries
    • …
    corecore