55 research outputs found

    Associations between Active Trachoma and Community Intervention with Antibiotics, Facial Cleanliness, and Environmental Improvement (A,F,E)

    Get PDF
    Trachoma is an infectious disease that is cased by a bacterium, Chlamydia trachomatis, and is the leading cause of preventable blindness estimated to be responsible for 3.6% of blindness globally. The World Health Organization (WHO) recommends a strategy for trachoma control known as SAFE—surgery, antibiotics, facial cleanliness, and environmental improvement. Regular evaluations of trachoma control activities are advocated for by the WHO for decision making, programme planning, and the rational use of programme resources. We undertook a survey to evaluate the effectiveness of the SAFE strategy following three years of interventions in four districts in Southern Sudan. In this paper, we aimed to find out the relationship between the antibiotics, facial cleanliness, and environmental improvement (A,F,E) and active trachoma signs. Our study revealed that prevalence of active trachoma was less in children who had received treatment with azithromycin, had clean faces, had faces washed more frequently, and used latrines compared to children who had not received these interventions. The study findings are important since they make the case for implementing the A,F,E interventions together

    Time-resolved imaging of magnetic vortex dynamics using holography with extended reference autocorrelation by linear differential operator

    Get PDF
    The magnetisation dynamics of the vortex core and Landau pattern of magnetic thin-film elements has been studied using holography with extended reference autocorrelation by linear differential operator (HERALDO). Here we present the first time-resolved x-ray measurements using this technique and investigate the structure and dynamics of the domain walls after excitation with nanosecond pulsed magnetic fields. It is shown that the average magnetisation of the domain walls has a perpendicular component that can change dynamically depending on the parameters of the pulsed excitation. In particular, we demonstrate the formation of wave bullet-like excitations, which are generated in the domain walls and can propagate inside them during the cyclic motion of the vortex core. Based on numerical simulations we also show that, besides the core, there are four singularities formed at the corners of the pattern. The polarisation of these singularities has a direct relation to the vortex core, and can be switched dynamically by the wave bullets excited with a magnetic pulse of specific parameters. The subsequent dynamics of the Landau pattern is dependent on the particular configuration of the polarisations of the core and the singularities

    Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms

    Get PDF
    Adhesion and migration are integrated cell functions that build, maintain and remodel the multicellular organism. In migrating cells, integrins are the main transmembrane receptors that provide dynamic interactions between extracellular ligands and actin cytoskeleton and signalling machineries. In parallel to integrins, other adhesion systems mediate adhesion and cytoskeletal coupling to the extracellular matrix (ECM). These include multifunctional cell surface receptors (syndecans and CD44) and discoidin domain receptors, which together coordinate ligand binding with direct or indirect cytoskeletal coupling and intracellular signalling. We review the way that the different adhesion systems for ECM components impact cell migration in two- and three-dimensional migration models. We further discuss the hierarchy of these concurrent adhesion systems, their specific tasks in cell migration and their contribution to migration in three-dimensional multi-ligand tissue environments

    The Polarity Protein Scribble Regulates Myelination and Remyelination in the Central Nervous System

    Get PDF
    The development and regeneration of myelin by oligodendrocytes, the myelin-forming cells of the central nervous system (CNS), requires profound changes in cell shape that lead to myelin sheath initiation and formation. Here, we demonstrate a requirement for the basal polarity complex protein Scribble in CNS myelination and remyelination. Scribble is expressed throughout oligodendroglial development and is up-regulated in mature oligodendrocytes where it is localised to both developing and mature CNS myelin sheaths. Knockdown of Scribble expression in cultured oligodendroglia results in disrupted morphology and myelination initiation. When Scribble expression is conditionally eliminated in the myelinating glia of transgenic mice, myelin initiation in CNS is disrupted, both during development and following focal demyelination, and longitudinal extension of the myelin sheath is disrupted. At later stages of myelination, Scribble acts to negatively regulate myelin thickness whilst suppressing the extracellular signal-related kinase (ERK)/mitogen-activated protein kinase (MAP) kinase pathway, and localises to non-compact myelin flanking the node of Ranvier where it is required for paranodal axo-glial adhesion. These findings demonstrate an essential role for the evolutionarily-conserved regulators of intracellular polarity in myelination and remyelination

    How robust are community-based plant bioindicators? Empirical testing of the relationship between Ellenberg values and direct environmental measures in woodland communities

    Get PDF
    There are several community-based bioindicator systems that use species presence or abundance data as proxies for environmental variables. One example is the Ellenberg system, whereby vegetation data are used to estimate environmental soil conditions. Despite widespread use of Ellenberg values in ecological research, the correlation between bioindicated values and actual values is often an implicit assumption rather than based on empirical evidence. Here, we correlate unadjusted and UK-adjusted Ellenberg values for soil moisture, pH, and nitrate in relation to direct environmental measures for 50 woodland sites in the UK, which were subject to repeat sampling. Our results show the accuracy of Ellenberg values is parameter specific; pH values were a good proxy for direct environmental measures but this was not true for soil moisture, when relationships were weak and non-significant. For nitrates, there were important seasonal differences, with a strong positive logarithmic relationship in the spring but a non-significant (and negative) correlation in summer. The UK-adjusted values were better than, or equivalent to, Ellenberg’s original ones, which had been quantified originally for Central Europe, in all cases. Somewhat surprisingly, unweighted values correlated with direct environmental measures better than did abundance-weighted ones. This suggests that the presence of rare plants can be highly important in accurate quantification of soil parameters and we recommend using an unweighted approach. However, site profiles created only using rare plants were inferior to profiles based on the whole plant community and thus cannot be used in isolation. We conclude that, for pH and nitrates, the Ellenberg system provides a useful estimate of actual conditions, but recalibration of moisture values should be considered along with the effect of seasonality on the efficacy of the system

    A Range of Earth Observation Techniques for Assessing Plant Diversity

    Get PDF
    AbstractVegetation diversity and health is multidimensional and only partially understood due to its complexity. So far there is no single monitoring approach that can sufficiently assess and predict vegetation health and resilience. To gain a better understanding of the different remote sensing (RS) approaches that are available, this chapter reviews the range of Earth observation (EO) platforms, sensors, and techniques for assessing vegetation diversity. Platforms include close-range EO platforms, spectral laboratories, plant phenomics facilities, ecotrons, wireless sensor networks (WSNs), towers, air- and spaceborne EO platforms, and unmanned aerial systems (UAS). Sensors include spectrometers, optical imaging systems, Light Detection and Ranging (LiDAR), and radar. Applications and approaches to vegetation diversity modeling and mapping with air- and spaceborne EO data are also presented. The chapter concludes with recommendations for the future direction of monitoring vegetation diversity using RS
    corecore