147 research outputs found

    A Validated Genome Wide Association Study to Breed Cattle Adapted to an Environment Altered by Climate Change

    Get PDF
    Continued production of food in areas predicted to be most affected by climate change, such as dairy farming regions of Australia, will be a major challenge in coming decades. Along with rising temperatures and water shortages, scarcity of inputs such as high energy feeds is predicted. With the motivation of selecting cattle adapted to these changing environments, we conducted a genome wide association study to detect DNA markers (single nucleotide polymorphisms) associated with the sensitivity of milk production to environmental conditions. To do this we combined historical milk production and weather records with dense marker genotypes on dairy sires with many daughters milking across a wide range of production environments in Australia. Markers associated with sensitivity of milk production to feeding level and sensitivity of milk production to temperature humidity index on chromosome nine and twenty nine respectively were validated in two independent populations, one a different breed of cattle. As the extent of linkage disequilibrium across cattle breeds is limited, the underlying causative mutations have been mapped to a small genomic interval containing two promising candidate genes. The validated marker panels we have reported here will aid selection for high milk production under anticipated climate change scenarios, for example selection of sires whose daughters will be most productive at low levels of feeding

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Cost-efficiency assessment of Advanced Life Support (ALS) courses based on the comparison of advanced simulators with conventional manikins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Simulation is an essential tool in modern medical education. The object of this study was to assess, in cost-effective measures, the introduction of new generation simulators in an adult life support (ALS) education program.</p> <p>Methods</p> <p>Two hundred fifty primary care physicians and nurses were admitted to ten ALS courses (25 students per course). Students were distributed at random in two groups (125 each). Group A candidates were trained and tested with standard ALS manikins and Group B ones with new generation emergency and life support integrated simulator systems.</p> <p>Results</p> <p>In group A, 98 (78%) candidates passed the course, compared with 110 (88%) in group B (p < 0.01). The total cost of conventional courses was €7689 per course and the cost of the advanced simulator courses was €29034 per course (p < 0.001). Cost per passed student was €392 in group A and €1320 in group B (p < 0.001).</p> <p>Conclusion</p> <p>Although ALS advanced simulator systems may slightly increase the rate of students who pass the course, the cost-effectiveness of ALS courses with standard manikins is clearly superior.</p

    Targeting of Pseudorabies Virus Structural Proteins to Axons Requires Association of the Viral Us9 Protein with Lipid Rafts

    Get PDF
    The pseudorabies virus (PRV) Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF). In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs). Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system

    Advancing a Conceptual Model of Evidence-Based Practice Implementation in Public Service Sectors

    Get PDF
    Implementation science is a quickly growing discipline. Lessons learned from business and medical settings are being applied but it is unclear how well they translate to settings with different historical origins and customs (e.g., public mental health, social service, alcohol/drug sectors). The purpose of this paper is to propose a multi-level, four phase model of the implementation process (i.e., Exploration, Adoption/Preparation, Implementation, Sustainment), derived from extant literature, and apply it to public sector services. We highlight features of the model likely to be particularly important in each phase, while considering the outer and inner contexts (i.e., levels) of public sector service systems

    Simulation of Vehicle-Pedestrian Interaction

    Get PDF
    The literature on vehicle crash reconstruction provides a number of empirical or classical theoretical models for the distance pedestrians are thrown in impacts with various types of vehicles and impact speeds. The aim of this research was to compare the predictions offered by computer simulation to those obtained using the empirical and classical theoretical models traditionally utilised in vehicle-pedestrian accident reconstruction. Particular attention was paid to the pedestrian throw distance versus vehicle impact speed relationship and the determination of pedestrian injury patterns and associated severity. It was discovered that computer simulation offered improved pedestrian kinematic prediction in comparison to traditional vehicle-pedestrian accident reconstruction techniques. The superior kinematic prediction was found to result in a more reliable pedestrian throw distance versus vehicle impact speed relationship, particularly in regard to varying vehicle and pedestrian parameters such as shape, size and orientation. The pedestrian injury prediction capability of computer simulation was found to be very good for head and lower extremity injury determination. Such injury prediction capabilities were noted to be useful in providing additional correlation of vehicle impact speed predictions, whether these predictions were made using computer simulation, traditional vehicle-pedestrian accident reconstruction methods or a combination of both. A generalised approach to the use of computer simulation for the reconstruction of vehicle-pedestrian accidents was also offered. It is hoped that this approach is developed and improved by other researchers so that over time guidelines for a standardised approach to the simulation of vehicle-pedestrian accidents might evolve. Thoracic injury prediction, particularly for frontal impacts, was found to be less than ideal. It is suspected that the relatively poor thoracic biofidelity stems from the development of pedestrian mathematical models from occupant mathematical models, which were in turn developed from cadaver and dummy tests. It is hoped that future research will result in improved thoracic biofidelity in human mathematical models

    The neurobiological link between OCD and ADHD

    Get PDF

    Shear behavior of DFDP-1 borehole samples from the Alpine Fault, New Zealand, under a wide range of experimental conditions

    Get PDF
    The Alpine Fault is a major plate-boundary fault zone that poses a major seismic hazard in southern New Zealand. The initial stage of the Deep Fault Drilling Project has provided sample material from the major lithological constituents of the Alpine Fault from two pilot boreholes. We use laboratory shearing experiments to show that the friction coefficient µ of fault-related rocks and their precursors varies between 0.38 and 0.80 depending on the lithology, presence of pore fluid, effective normal stress, and temperature. Under conditions appropriate for several kilometers depth on the Alpine Fault (100 MPa, 160 °C, fluid-saturated), a gouge sample located very near to the principal slip zone exhibits µ = 0.67, which is high compared with other major fault zones targeted by scientific drilling, and suggests the capacity for large shear stresses at depth. A consistent observation is that every major lithological unit tested exhibits positive and negative values of friction velocity dependence. Critical nucleation patch lengths estimated using representative values of the friction velocity-dependent parameter a−b and the critical slip distance D c , combined with previously documented elastic properties of the wall rock, may be as low as ~3 m. This small value, consistent with a seismic moment M o = ~4 × 1010 for an M w = ~1 earthquake, suggests that events of this size or larger are expected to occur as ordinary earthquakes and that slow or transient slip events are unlikely in the approximate depth range of 3–7 km

    Going Through the Rites of Passage: Timing and Transition of Menarche, Childhood Sexual Abuse, and Anxiety Symptoms in Girls

    Get PDF
    Menarche is a discrete, transitional event that holds considerable personal, social, biological, and developmental significance. The present longitudinal study examined both the transition and timing of menarche on the trajectory of anxiety in girls with histories of childhood maltreatment (N = 93; 63% European American, 14% multiracial, 10% Latino, 9% African American, and 4% Native American). We hypothesized that because menarche is a novel, unfamiliar experience, girls would show greater anxiety around the time of menarche. The anxiety-provoking nature of menarche may be accentuated among earlier-maturing girls and girls with histories of childhood sexual abuse. Results indicated that earlier-maturing girls were more anxious in the pre- and peri-menarche periods than their later-maturing peers; however, their anxiety declined after menarche. Childhood sexual abuse was associated with heightened anxiety throughout this transition. The developmental significance of the timing and transition of menarche in relation to childhood sexual abuse and anxiety is discussed

    The determinants of genetic diversity in butterflies

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordUnder the neutral theory, genetic diversity is expected to increase with population size. While comparative analyses have consistently failed to find strong relationships between census population size and genetic diversity, a recent study across animals identified a strong correlation between propagule size and genetic diversity, suggesting that r-strategists that produce many small offspring, have greater long-term population sizes. Here we compare genome-wide genetic diversity across 38 species of European butterflies (Papilionoidea), a group that shows little variation in reproductive strategy. We show that genetic diversity across butterflies varies over an order of magnitude and that this variation cannot be explained by differences in current abundance, propagule size, host or geographic range. Instead, neutral genetic diversity is negatively correlated with body size and positively with the length of the genetic map. This suggests that genetic diversity is determined both by differences in long-term population size and the elect of selection on linked sites.Biotechnology & Biological Sciences Research Council (BBSRC)European Research CouncilNatural Environmental Research Council (NERC)Institute of Evolutionary Biology at Edinburgh Universit
    corecore