332 research outputs found

    Exact Master Equation and Non-Markovian Decoherence for Quantum Dot Quantum Computing

    Full text link
    In this article, we report the recent progress on decoherence dynamics of electrons in quantum dot quantum computing systems using the exact master equation we derived recently based on the Feynman-Vernon influence functional approach. The exact master equation is valid for general nanostructure systems coupled to multi-reservoirs with arbitrary spectral densities, temperatures and biases. We take the double quantum dot charge qubit system as a specific example, and discuss in details the decoherence dynamics of the charge qubit under coherence controls. The decoherence dynamics risen from the entanglement between the system and the environment is mainly non-Markovian. We further discuss the decoherence of the double-dot charge qubit induced by quantum point contact (QPC) measurement where the master equation is re-derived using the Keldysh non-equilibrium Green function technique due to the non-linear coupling between the charge qubit and the QPC. The non-Markovian decoherence dynamics in the measurement processes is extensively discussed as well.Comment: 15 pages, Invited article for the special issue "Quantum Decoherence and Entanglement" in Quantum Inf. Proces

    Application of the Convection–Dispersion Equation to Modelling Oral Drug Absorption

    Get PDF
    Models of systemic drug absorption after oral administration are frequently based on a direct or a delayed first-order rate process. In practice, the use of the first-order approach to predict drug concentrations in blood plasma frequently yields a considerable mismatch between predicted and measured concentration profiles. This is particularly true for the upswing of the plasma concentration after oral administration. The current investigation explores an alternative model to describe the absorption rate based on the convection–dispersion equation describing the transport of chemicals through the GI tract. This equation is governed by two parameters, transport velocity and dispersion coefficient. One solution of this equation for a specific set of initial and boundary conditions was used to model absorption of paracetamol in a 22-year-old man after oral administration. The GI-tract passage rate in this subject was influenced by co-administration of drugs that stimulate or delay gastric emptying. The transport-limited absorption function is more accurate in describing the plasma concentration versus time curve after oral administration than the first-order model. Additionally, it provides a mechanistic explanation for the observed curve through the differences in GI-tract passage rate

    Branching Fractions for D0 -> K+K- and D0 -> pi+pi-, and a Search for CP Violation in D0 Decays

    Full text link
    Using the large hadroproduced charm sample collected in experiment E791 at Fermilab, we have measured ratios of branching fractions for the two-body singly-Cabibbo-suppressed charged decays of the D0: (D0 -> KK)/(D0 -> Kpi) = 0.109 +- 0.003 +- 0.003, (D0 -> pipi)/(D0 -> Kpi) = 0.040 +- 0.002 +- 0.003, and (D0 -> KK)/(D0 -> pipi) = 2.75 +- 0.15 +- 0.16. We have looked for differences in the decay rates of D0 and D0bar to the CP eigenstates K+K- and pi+pi-, and have measured the CP asymmetry parameters A_CP(K+K-) = -0.010 +- 0.049 +- 0.012 and A_CP(pi+pi-) = -0.049 +- 0.078 +- 0.030, both consistent with zero.Comment: 10 Postscript pages, including 2 figures. Submitted to Phys. Lett.

    Search for Rare and Forbidden Dilepton Decays of the D+, Ds, and D0 Charmed Mesons

    Full text link
    We report the results of a search for flavor-changing neutral current, lepton-flavor violating, and lepton-number violating decays of D+, Ds, and D0 mesons (and their antiparticles) into modes containing muons and electrons. Using data from Fermilab charm hadroproduction experiment E791, we examine the pi,l,l and K,l,l decay modes of D+ and Ds and the l+l- decay modes of D0. No evidence for any of these decays is found. Therefore, we present branching-fraction upper limits at 90% confidence level for the 24 decay modes examined. Eight of these modes have no previously reported limits, and fourteen are reported with significant improvements over previously published results.Comment: 12 pages, 3 figures, LaTeX, elsart.cls, epsf.sty, amsmath.sty Submitted to Physics Letters

    Search for CP Violation in Charged D Meson Decays

    Full text link
    We report results of a search for CP violation in the singly Cabibbo-suppressed decays D+ -> K- K+ pi+, phi pi+, K*(892)0 K+, and pi- pi+ pi+ based on data from the charm hadroproduction experiment E791 at Fermilab. We search for a difference in the D+ and D- decay rates for each of the final states. No evidence for a difference is seen. The decay rate asymmetry parameters A(CP), defined as the difference in the D+ and D- decay rates divided by the sum of the decay rates, are measured to be: A(CP)(K K pi) = -0.014 +/- 0.029, A(CP)(phi pi) = -0.028 +/- 0.036, A(CP)(K*(892) K) = -0.010 +/- 0.050, and A(CP)(pi pi pi) = -0.017 +/- 0.042.Comment: 13 pages, 5 figures, 1 table; Elsevier LaTe

    Asymmetries between the production of D+ and D- mesons from 500 GeV/c pi- nucleon interactions as a function of xF and pt**2

    Full text link
    We present asymmetries between the production of D+ and D- mesons in Fermilab experiment E791 as a function of xF and pt**2. The data used here consist of 74,000 fully-reconstructed charmed mesons produced by a 500 GeV/c pi- beam on C and Pt foils. The measurements are compared to results of models which predict differences between the production of heavy-quark mesons that have a light quark in common with the beam (leading particles) and those that do not (non-leading particles). While the default models do not agree with our data, we can reach agreement with one of them, PYTHIA, by making a limited number of changes to parameters used

    Measurement of the form-factor ratios for D+ --> K* l nu

    Full text link
    The form factor ratios rv=V(0)/A1(0), r2=A2(0)/A1(0) and r3=A3(0)/A1(0) in the decay D+ --> K* l nu, K* -->K-pi+ have been measured using data from charm hadroproduction experiment E791 at Fermilab. From 3034 (595) signal (background) events in the muon channel, we obtain rv=1.84+-0.11+-0.09, r2=0.75+-0.08+-0.09 and, as a first measurement of r3, we find 0.04+-0.33 +-0.29. The values of the form factor ratios rv and r2 measured for the muon channel are combined with the values of rv and r2 that we have measured in the electron channel. The combined E791 results for the muon and electron channels are rv=1.87+-0.08+-0.07 and r2=0.73+-0.06+-0.08.Comment: 9 pages + 3 figures ; submitted to PL

    Differential cross sections, charge production asymmetry, and spin-density matrix elements for D*(2010) produced in 500 GeV/c pi^- nucleon interactions

    Full text link
    We report differential cross sections for the production of D*(2010) produced in 500 GeV/c pi^- nucleon interactions from experiment E791 at Fermilab, as functions of Feynman-x (x_F) and transverse momentum squared (p_T^2). We also report the D* +/- charge asymmetry and spin-density matrix elements as functions of these variables. Investigation of the spin-density matrix elements shows no evidence of polarization. The average values of the spin alignment are \eta= 0.01 +- 0.02 and -0.01 +- 0.02 for leading and non-leading particles, respectively.Comment: LaTeX2e (elsart.cls). 13 pages, 6 figures (eps files). Submitted to Physics Letters

    Mass Splitting and Production of Σc0\Sigma_c^0 and Σc++\Sigma_c^{++} Measured in 500GeV500 {GeV} π\pi^- -N Interactions

    Full text link
    From a sample of 2722±782722 \pm 78 Λc+\Lambda_c^+ decaying to the pKπ+pK^-\pi^+ final state, we have observed, in the hadroproduction experiment E791 at Fermilab, 143±20143 \pm 20 Σc0\Sigma_c^0 and 122±18122 \pm 18 Σc++\Sigma_c^{++} through their decays to Λc+π±\Lambda_c^+ \pi^{\pm}. The mass difference M(Σc0)M(Λc+M(\Sigma_c^0) - M(\Lambda_c^+) is measured to be (167.38±0.29±0.15)MeV(167.38\pm 0.29\pm 0.15) {MeV}; for M(Σc++)M(Λc+)M(\Sigma_c^{++}) - M(\Lambda_c^+), we find (167.76±0.29±0.15)MeV(167.76\pm 0.29\pm0.15) {MeV}. The rate of Λc+\Lambda_c^+ production from decays of the Σc\Sigma_c triplet is (22\pm 2\pm 3) {%} of the total Λc+\Lambda_c^+ production assuming equal rate of production from all three, as measured for Σc0\Sigma_c^0 and Σc++\Sigma_c^{++}. We do not observe a statistically significant Σc\Sigma_c baryon-antibaryon production asymmetry. The xFx_F and pt2p_t^2 spectra of Λc+\Lambda_c^+ from Σc\Sigma_c decays are observed to be similar to those for all Λc+\Lambda_c^+'s produced.Comment: 15 pages, uuencoded postscript 3 figures uuencoded, tar-compressed fil

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic
    corecore