152 research outputs found

    Comparison of Dinitrogen Fixation and Nitrogen Transfer Potentials of Four Red Clover Cultivars

    Get PDF
    The capacity to fix atmospheric N2 and thus reduce the use of N fertilizer is an important reason for including legumes in forage mixtures. Selection for more efficient N2 fixation could improve red clover (Trifolium prateme L.) (RC) production and its contribution to soil fertility. An isotope dilution study was conducted in two greenhouse experiments to compare the N2 fixation and N transfer potentials of three commercial and one experimental RC cultivars. The experimental cultivar APR-8701 was selected for traits related to increased N2 fixation (rate of acetylene reduction, root size and branch number, and nodule mass). \u27Dawn\u27 orchardgrass (Dactylis glomerata L.) (OG) was used as the grass in mixture and as the reference crop for the isotope dilution study. Four harvests were taken from each of the two experiments. Herbage was analyzed first for total N and then for isotopic composition by mass spectrometry. Under the conditions of this study, the particular traits selected for in the development of the cultivar APR-8701 resulted in a high N2 fixation rate, ranging from 88.9 to 99.8 %N derived from the atmosphere (%Ndfa) in pure and mixed stands of both experiments, that paralleled the other three cultivars tested (ranging between 86.8 and 99. 9 %Ndfa in pure and mixed stands of both experiments). However, APR-8701 was average when N transfer potentials were compared. Average %N in grass derived from the atmosphere (%Ngdfa) was 32.2 and 46.3% for OG grown with APR-8701 in experiments 1 and 2, respectively, and ranged between 30. 5 and 50.1% for OG grown with the other three cultivars. We conclude that the experimental cultivar APR-8701 showed N2 fixation rates similar to that of other superior, commercially available cultivars, however, APR-8701 only showed average N transfer capability

    Order-of-magnitude speedup for steady states and traveling waves via Stokes preconditioning in Channelflow and Openpipeflow

    Full text link
    Steady states and traveling waves play a fundamental role in understanding hydrodynamic problems. Even when unstable, these states provide the bifurcation-theoretic explanation for the origin of the observed states. In turbulent wall-bounded shear flows, these states have been hypothesized to be saddle points organizing the trajectories within a chaotic attractor. These states must be computed with Newton's method or one of its generalizations, since time-integration cannot converge to unstable equilibria. The bottleneck is the solution of linear systems involving the Jacobian of the Navier-Stokes or Boussinesq equations. Originally such computations were carried out by constructing and directly inverting the Jacobian, but this is unfeasible for the matrices arising from three-dimensional hydrodynamic configurations in large domains. A popular method is to seek states that are invariant under numerical time integration. Surprisingly, equilibria may also be found by seeking flows that are invariant under a single very large Backwards-Euler Forwards-Euler timestep. We show that this method, called Stokes preconditioning, is 10 to 50 times faster at computing steady states in plane Couette flow and traveling waves in pipe flow. Moreover, it can be carried out using Channelflow (by Gibson) and Openpipeflow (by Willis) without any changes to these popular spectral codes. We explain the convergence rate as a function of the integration period and Reynolds number by computing the full spectra of the operators corresponding to the Jacobians of both methods.Comment: in Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics, ed. Alexander Gelfgat (Springer, 2018

    Developing a National Alfalfa Information System

    Get PDF
    Using state-of-the-art telecommunication technologies, this project is developing a comprehensive knowledge resource for alfalfa (Medicago sativa L.); the National Alfalfa Information System (NAIS). This project will serve as an improved model for Extension educational programs. Alfalfa is the most important forage crop in the USA and grown worldwide for feeding millions of livestock and in many cropping systems. As a legume, it is important in sustaining the environment and the productivity of agriculture. Information needs are present in every state and internationally. The NAIS is being developed through national and international cooperation, putting the best science-based alfalfa information and expertise at the fingertips of producers, consultants, extension workers, instructors, researchers, and users. Collaboratively developed materials will reduce duplication of effort. To make the knowledge easy-to-use, educational design, communication, and information science professionals are working with alfalfa experts in creating a WWW system and Web-aware CD-ROM. To ensure content quality, peer-review by members of multiple professional societies is included. A significant result will be around-the-clock availability of up-to-date, easy-to-use, and peerreviewed information. Shared workload and the peer-review process can influence faculty morale, efficiency, and effectiveness, an adjunct to maximizing the utilization of alfalfa worldwide by making the best information readily available

    Survival of massive allografts in segmental oncological bone defect reconstructions

    Get PDF
    Reconstructions of large segmental bone defects after resection of bone tumours with massive structural allografts have a high number of reported complications including fracture, infection and non-union. Our goal is to report the survival and complications of massive allografts in our patients. A total of 32 patients were evaluated for fracture, infection, non-union rate and survival of their massive allograft reconstructions. The average follow-up for this group was five years and three months. The total fracture rate was 13% with a total infection rate of 16%. We found a low union rate of 25%. The total survival of the allografts was 80.8% (± 18.7%) after five years. We found a five-year allograft survival of 80.8% which is comparable with other studies

    EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis.

    Get PDF
    Hydrops fetalis describes fluid accumulation in at least 2 fetal compartments, including abdominal cavities, pleura, and pericardium, or in body tissue. The majority of hydrops fetalis cases are nonimmune conditions that present with generalized edema of the fetus, and approximately 15% of these nonimmune cases result from a lymphatic abnormality. Here, we have identified an autosomal dominant, inherited form of lymphatic-related (nonimmune) hydrops fetalis (LRHF). Independent exome sequencing projects on 2 families with a history of in utero and neonatal deaths associated with nonimmune hydrops fetalis uncovered 2 heterozygous missense variants in the gene encoding Eph receptor B4 (EPHB4). Biochemical analysis determined that the mutant EPHB4 proteins are devoid of tyrosine kinase activity, indicating that loss of EPHB4 signaling contributes to LRHF pathogenesis. Further, inactivation of Ephb4 in lymphatic endothelial cells of developing mouse embryos led to defective lymphovenous valve formation and consequent subcutaneous edema. Together, these findings identify EPHB4 as a critical regulator of early lymphatic vascular development and demonstrate that mutations in the gene can cause an autosomal dominant form of LRHF that is associated with a high mortality rate

    Grassland productivity limited by multiple nutrients

    Get PDF
    Terrestrial ecosystem productivity is widely accepted to be nutrient limited1. Although nitrogen (N) is deemed a key determinant of aboveground net primary production (ANPP)2,3, the prevalence of co-limitation by N and phosphorus (P) is increasingly recognized4,​5,​6,​7,​8. However, the extent to which terrestrial productivity is co-limited by nutrients other than N and P has remained unclear. Here, we report results from a standardized factorial nutrient addition experiment, in which we added N, P and potassium (K) combined with a selection of micronutrients (K+μ), alone or in concert, to 42 grassland sites spanning five continents, and monitored ANPP. Nutrient availability limited productivity at 31 of the 42 grassland sites. And pairwise combinations of N, P, and K+μ co-limited ANPP at 29 of the sites. Nitrogen limitation peaked in cool, high latitude sites. Our findings highlight the importance of less studied nutrients, such as K and micronutrients, for grassland productivity, and point to significant variations in the type and degree of nutrient limitation. We suggest that multiple-nutrient constraints must be considered when assessing the ecosystem-scale consequences of nutrient enrichment

    Dynamics of soil organic carbon following land-use change: insights from stable C-isotope analysis in black soil of Northeast China

    Get PDF
    Intensive soil tillage is a significant factor in soil organic matter decline in cultivated soils. Both cultivation abandonment and foregoing tillage have been encouraged in the past 30 years to reduce greenhouse gas emissions and soil erosion. However, the dynamic processes of soil organic carbon (SOC) in areas of either continuous cultivation or abandonment remain unclear and inconsistent. Our aims were to assess and model the dynamic processes of SOC under continuous tillage and after cultivation abandonment in the black soil of Northeast China. Soil profiles were collected of cultivated or abandoned land with cultivation history of 0–100 years. An isotope mass balance equation was used to calculate the proportion of SOC derived from corn debris (C4) and from natural vegetation (C3) to deduce the dynamic process. Approximately 40% of SOC in the natural surface soil (0–10 cm) was eroded in the first 5 years of cultivation, increasing to about 75% within 40 years, before a slow recovery. C4 above 30 cm soil depth increased by 4.5%–5% or 0.11–0.12 g·kg−1 on average per year under continuous cultivation, while it decreased by approximately 0.34% annually in the surface soil after cultivation abandonment. The increase in the percentage of C4 was fitted to a linear equation with given intercepts in the upper 30 cm of soil in cultivated land. A significant relationship between the change of C4 and time was found only in the surface soil after abandonment of cultivation. These results demonstrate the loss and accumulation of corn-derived SOC in surface black soil of Northeast China under continuous tillage or cultivation abandonment

    Effects of Fall Weathering on Yield and Composition of Grain Sorghum Stover 1

    No full text
    • …
    corecore