816 research outputs found

    Guanosine nucleotides regulate B2 kinin receptor affinity of agonists but not of antagonists: Discussion of a model proposing receptor precoupling to G protein

    Get PDF
    The effect of nucleotides on binding of the B2 kinin (BK) receptor agonist {[}H-3]BK and the antagonist {[}H-3]NPC17731 to particulate fractions of human foreskin fibroblasts was studied. At 0 degrees C, particulate fractions exhibited a single class of binding sites with a Kd of 2.3 nM for {[}H-3]BK and a K-d Of 3.8 nM for the antagonist {[}H-3]NPC17731. Incubation with radioligands at 37 degrees C for 5 min gave a reduction of agonist, as well as antagonist, binding that was between 0-40% depending on the preparation, even in the absence of guanosine nucleotides. As shown by Scatchard analysis, this reduction in specific binding was due to a shift in the affinity of at least a fraction of the receptors. The presence at 37 degrees C of the guanine nucleotides GTP, GDP and their poorly hydrolyzable analogs left {[}H-3]-NPC17731 binding unaffected, but reduced the receptor affinity for {[}H-3]BK to a K-d Of about 15 nM. The maximal number of receptors, however, was unchanged. This affinity change was strongly dependent on the presence of bivalent cations, in particular Mg2+. It was reversed by incubation at 0 degrees C, The rank order of the guanosine nucleotides for {[}H-3]BK binding reduction was GTP{[}gamma S] = Gpp{[}NH]p > GTP = GDP > GDP{[}beta S]. GMP, ATP, ADP and AMP showed no influence on agonist binding. A model for the interaction of the B2 kinin receptor with G proteins is discussed

    Dynamical System Approach to Cosmological Models with a Varying Speed of Light

    Get PDF
    Methods of dynamical systems have been used to study homogeneous and isotropic cosmological models with a varying speed of light (VSL). We propose two methods of reduction of dynamics to the form of planar Hamiltonian dynamical systems for models with a time dependent equation of state. The solutions are analyzed on two-dimensional phase space in the variables (x,x˙)(x, \dot{x}) where xx is a function of a scale factor aa. Then we show how the horizon problem may be solved on some evolutional paths. It is shown that the models with negative curvature overcome the horizon and flatness problems. The presented method of reduction can be adopted to the analysis of dynamics of the universe with the general form of the equation of state p=γ(a)ϵp=\gamma(a)\epsilon. This is demonstrated using as an example the dynamics of VSL models filled with a non-interacting fluid. We demonstrate a new type of evolution near the initial singularity caused by a varying speed of light. The singularity-free oscillating universes are also admitted for positive cosmological constant. We consider a quantum VSL FRW closed model with radiation and show that the highest tunnelling rate occurs for a constant velocity of light if c(a)anc(a) \propto a^n and 1<n0-1 < n \le 0. It is also proved that the considered class of models is structurally unstable for the case of n<0n < 0.Comment: 18 pages, 5 figures, RevTeX4; final version to appear in PR

    Scenario of Accelerating Universe from the Phenomenological \Lambda- Models

    Full text link
    Dark matter, the major component of the matter content of the Universe, played a significant role at early stages during structure formation. But at present the Universe is dark energy dominated as well as accelerating. Here, the presence of dark energy has been established by including a time-dependent Λ\Lambda term in the Einstein's field equations. This model is compatible with the idea of an accelerating Universe so far as the value of the deceleration parameter is concerned. Possibility of a change in sign of the deceleration parameter is also discussed. The impact of considering the speed of light as variable in the field equations has also been investigated by using a well known time-dependent Λ\Lambda model.Comment: Latex, 9 pages, Major change

    Electron transport through interacting quantum dots

    Full text link
    We present a detailed theoretical investigation of the effect of Coulomb interactions on electron transport through quantum dots and double barrier structures connected to a voltage source via an arbitrary linear impedance. Combining real time path integral techniques with the scattering matrix approach we derive the effective action and evaluate the current-voltage characteristics of quantum dots at sufficiently large conductances. Our analysis reveals a reach variety of different regimes which we specify in details for the case of chaotic quantum dots. At sufficiently low energies the interaction correction to the current depends logarithmically on temperature and voltage. We identify two different logarithmic regimes with the crossover between them occurring at energies of order of the inverse dwell time of electrons in the dot. We also analyze the frequency-dependent shot noise in chaotic quantum dots and elucidate its direct relation to interaction effects in mesoscopic electron transport.Comment: 21 pages, 4 figures. References added, discussion slightly extende

    Grounding deep neural network predictions of human categorization behavior in understandable functional features: the case of face identity

    Get PDF
    Deep neural networks (DNNs) can resolve real-world categorization tasks with apparent human-level performance. However, true equivalence of behavioral performance between humans and their DNN models requires that their internal mechanisms process equivalent features of the stimulus. To develop such feature equivalence, our methodology leveraged an interpretable and experimentally controlled generative model of the stimuli (realistic three-dimensional textured faces). Humans rated the similarity of randomly generated faces to four familiar identities. We predicted these similarity ratings from the activations of five DNNs trained with different optimization objectives. Using information theoretic redundancy, reverse correlation, and the testing of generalization gradients, we show that DNN predictions of human behavior improve because their shape and texture features overlap with those that subsume human behavior. Thus, we must equate the functional features that subsume the behavioral performances of the brain and its models before comparing where, when, and how these features are processed

    The Nature of Dark Matter

    Get PDF
    The observed strong dark-to-luminous matter coupling suggests the existence of a some functional relation between visible and DM sources which leads to biased Einstein equations. We show that such a bias appears in the case when the topological structure of the actual Universe at very large distances does not match properly that of the Friedman space. We introduce a bias operator ρDM=Bρvis\rho_{DM} = B \rho_{vis} and show that the simple bias function b1˜/r2b \~1/r^{2} (the kernel of BB) allows to account for all the variety of observed DM halos in astrophysical systems. In galaxies such a bias forms the cored DM distribution with the radius RCRoptR_{C}\sim R_{opt} (which explains the recently observed strong correlation between RCR_{C} and RoptR_{opt}), while for a point source it produces the logarithmic correction to the Newton's potential (which explains the observed flat rotation curves in spirals). Finally, we show that in the theory suggested the galaxy formation process leads to a specific variation with time of all interaction constants and, in particular, of the fine structure constant.Comment: 12 pages, essential revisio

    Postmodern professions? The fragmentation of legal education and the legal profession

    Get PDF
    This article considers the institutional dimensions of professionalism and the legal profession's struggle with the challenges of post-modernity. An aspect of this is the Law Society's Training Framework Review (TFR) which promises changes to solicitors' education from 'cradle to grave'. The first part of the article analyses the structure and drivers of the TFR, their origins, and how they will be articulated. Secondly, the TFR is considered in the context of the political economy of higher education and its role in the new capitalism. Finally, we examine the potential effects of the TFR for the legal profession in the context of increasing practice segmentation and the threat of deprofessionalization, and also for the Law Society itself, whether it can retain a key role in the life course of the legal profession

    On the structure and evolution of a polar crown prominence/filament system

    Full text link
    Polar crown prominences are made of chromospheric plasma partially circling the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D dynamics of a polar crown prominence using high cadence EUV images from the Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using time series across specific structures we compare flows across the disk in 195A with the prominence dynamics seen on the limb. The densest prominence material forms vertical columns which are separated by many tens of Mm and connected by dynamic bridges of plasma that are clearly visible in 304/171A two-color images. We also observe intermittent but repetitious flows with velocity 15 km/s in the prominence that appear to be associated with EUV bright points on the solar disk. The boundary between the prominence and the overlying cavity appears as a sharp edge. We discuss the structure of the coronal cavity seen both above and around the prominence. SDO/HMI and GONG magnetograms are used to infer the underlying magnetic topology. The evolution and structure of the prominence with respect to the magnetic field seems to agree with the filament linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar

    Radiative Decay of a Long-Lived Particle and Big-Bang Nucleosynthesis

    Full text link
    The effects of radiatively decaying, long-lived particles on big-bang nucleosynthesis (BBN) are discussed. If high-energy photons are emitted after BBN, they may change the abundances of the light elements through photodissociation processes, which may result in a significant discrepancy between the BBN theory and observation. We calculate the abundances of the light elements, including the effects of photodissociation induced by a radiatively decaying particle, but neglecting the hadronic branching ratio. Using these calculated abundances, we derive a constraint on such particles by comparing our theoretical results with observations. Taking into account the recent controversies regarding the observations of the light-element abundances, we derive constraints for various combinations of the measurements. We also discuss several models which predict such radiatively decaying particles, and we derive constraints on such models.Comment: Published version in Phys. Rev. D. Typos in figure captions correcte
    corecore