2,434 research outputs found

    The hand of Homo naledi

    Get PDF
    A nearly complete right hand of an adult hominin was recovered from the Rising Star cave system, South Africa. Based on associated hominin material, the bones of this hand are attributed to Homo naledi. This hand reveals a long, robust thumb and derived wrist morphology that is shared with Neandertals and modern humans, and considered adaptive for intensified manual manipulation. However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension. These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi

    Mitochondrial echoes of first settlement and genetic continuity in El Salvador

    Get PDF
    Background: From Paleo-Indian times to recent historical episodes, the Mesoamerican isthmus played an important role in the distribution and patterns of variability all around the double American continent. However, the amount of genetic information currently available on Central American continental populations is very scarce. In order to shed light on the role of Mesoamerica in the peopling of the New World, the present study focuses on the analysis of the mtDNA variation in a population sample from El Salvador. Methodology/Principal Findings: We have carried out DNA sequencing of the entire control region of the mitochondrial DNA (mtDNA) genome in 90 individuals from El Salvador. We have also compiled more than 3,985 control region profiles from the public domain and the literature in order to carry out inter-population comparisons. The results reveal a predominant Native American component in this region: by far, the most prevalent mtDNA haplogroup in this country (at ~90%) is A2, in contrast with other North, Meso- and South American populations. Haplogroup A2 shows a star-like phylogeny and is very diverse with a substantial proportion of mtDNAs (45%; sequence range 16090–16365) still unobserved in other American populations. Two different Bayesian approaches used to estimate admixture proportions in El Salvador shows that the majority of the mtDNAs observed come from North America. A preliminary founder analysis indicates that the settlement of El Salvador occurred about 13,400±5,200 Y.B.P.. The founder age of A2 in El Salvador is close to the overall age of A2 in America, which suggests that the colonization of this region occurred within a few thousand years of the initial expansion into the Americas. Conclusions/Significance: As a whole, the results are compatible with the hypothesis that today's A2 variability in El Salvador represents to a large extent the indigenous component of the region. Concordant with this hypothesis is also the observation of a very limited contribution from European and African women (~5%). This implies that the Atlantic slave trade had a very small demographic impact in El Salvador in contrast to its transformation of the gene pool in neighbouring populations from the Caribbean facade

    Patterns of analgesic use, pain and self-efficacy: a cross-sectional study of patients attending a hospital rheumatology clinic

    Get PDF
    Background: Many people attending rheumatology clinics use analgesics and non-steroidal anti-inflammatories for persistent musculoskeletal pain. Guidelines for pain management recommend regular and pre-emptive use of analgesics to reduce the impact of pain. Clinical experience indicates that analgesics are often not used in this way. Studies exploring use of analgesics in arthritis have historically measured adherence to such medication. Here we examine patterns of analgesic use and their relationships to pain, self-efficacy and demographic factors. Methods: Consecutive patients were approached in a hospital rheumatology out-patient clinic. Pattern of analgesic use was assessed by response to statements such as 'I always take my tablets every day.' Pain and self-efficacy (SE) were measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Arthritis Self-Efficacy Scale (ASES). Influence of factors on pain level and regularity of analgesic use were investigated using linear regression. Differences in pain between those agreeing and disagreeing with statements regarding analgesic use were assessed using t-tests. Results: 218 patients (85% of attendees) completed the study. Six (2.8%) patients reported no current pain, 26 (12.3%) slight, 100 (47.4%) moderate, 62 (29.4%) severe and 17 (8.1%) extreme pain. In multiple linear regression self efficacy and regularity of analgesic use were significant (p < 0.01) with lower self efficacy and more regular use of analgesics associated with more pain. Low SE was associated with greater pain: 40 (41.7%) people with low SE reported severe pain versus 22 (18.3%) people with high SE, p < 0.001. Patients in greater pain were significantly more likely to take analgesics regularly; 13 (77%) of those in extreme pain reported always taking their analgesics every day, versus 9 (35%) in slight pain. Many patients, including 46% of those in severe pain, adjusted analgesic use to current pain level. In simple linear regression, pain was the only variable significantly associated with regularity of analgesic use: higher levels of pain corresponded to more regular analgesic use (p = 0.003). Conclusion: Our study confirms that there is a strong inverse relationship between self-efficacy and pain severity. Analgesics are often used irregularly by people with arthritis, including some reporting severe pain

    Forming Planetesimals in Solar and Extrasolar Nebulae

    Full text link
    Planets are built from planetesimals: solids larger than a kilometer which grow by colliding pairwise. Planetesimals themselves are unlikely to form by two-body collisions; sub-km objects have gravitational fields individually too weak, and electrostatic attraction is too feeble for growth beyond a few cm. We review the possibility that planetesimals form when self-gravity brings together vast ensembles of small particles. Even when self-gravity is weak, aerodynamic processes can accumulate solids relative to gas, paving the way for gravitational collapse. Particles pile up as they drift radially inward. Gas turbulence stirs particles, but can also seed collapse by clumping them. While the feedback of solids on gas triggers vertical shear instabilities that obstruct self-gravity, this same feedback triggers streaming instabilities that strongly concentrate particles. Numerical simulations find that solids 10-100 cm in size gravitationally collapse in turbulent disks. We outline areas for progress, including the possibility that still smaller objects self-gravitate.Comment: To appear in Annual Reviews. This review is intended to be both current and pedagogical. Incorporates suggestions from the community; further comments welcome. v2: Single-space

    Pulmonary talc granulomatosis mimicking malignant disease 30 years after last exposure: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Pulmonary talc granulomatosis is a rare disorder characterized by the development of foreign body granuloma secondary to talc exposure. Previous case reports have documented the illness in current intravenous drug users who inject medications intended for oral use. We present a rare case of the disease in a patient with a distant history of heroin abuse who presented initially with history and imaging findings highly suggestive of malignancy.</p> <p>Case presentation</p> <p>A 53-year-old man reported a 4-month history of increasing dyspnea and weight loss. He had a long history of smoking and admission chest X-ray revealed a density in the right hemithorax. Computed tomography confirmed a probable mass with further speculated opacities in both lung fields suspicious for malignant spread. Biopsies obtained using endobronchial ultrasound-guided aspiration returned negative for malignancy and showed bronchial epithelial cells with foreign body giant cell reaction and polarizable birefringent talc crystals.</p> <p>Conclusion</p> <p>This case demonstrates a rare presentation of talc granulomatosis three decades after the last likely exposure. The history and imaging findings in a chronic smoker were initially strongly suggestive of malignant disease, and we recommend that talc-induced lung disease is considered in any patient with multiple scattered pulmonary lesions and a history of intravenous drug use. Confirmation of the disease by biopsy is essential, but unfortunately there are few successful proven management options for patients with worsening disease.</p

    Extensive dissolution of live pteropods in the Southern Ocean

    Get PDF
    The carbonate chemistry of the surface ocean is rapidly changing with ocean acidification, a result of human activities. In the upper layers of the Southern Ocean, aragonite—a metastable form of calcium carbonate with rapid dissolution kinetics—may become undersaturated by 2050 (ref. 2). Aragonite undersaturation is likely to affect aragonite-shelled organisms, which can dominate surface water communities in polar regions. Here we present analyses of specimens of the pteropod Limacina helicina antarctica that were extracted live from the Southern Ocean early in 2008. We sampled from the top 200m of the water column, where aragonite saturation levels were around 1, as upwelled deep water is mixed with surface water containing anthropogenic CO2. Comparing the shell structure with samples from aragonite-supersaturated regions elsewhere under a scanning electron microscope, we found severe levels of shell dissolution in the undersaturated region alone. According to laboratory incubations of intact samples with a range of aragonite saturation levels, eight days of incubation in aragonite saturation levels of 0.94– 1.12 produces equivalent levels of dissolution. As deep-water upwelling and CO2 absorption by surface waters is likely to increase as a result of human activities2,4, we conclude that upper ocean regions where aragonite-shelled organisms are affected by dissolution are likely to expand

    Collective Animal Behavior from Bayesian Estimation and Probability Matching

    Get PDF
    Animals living in groups make movement decisions that depend, among other factors, on social interactions with other group members. Our present understanding of social rules in animal collectives is based on empirical fits to observations and we lack first-principles approaches that allow their derivation. Here we show that patterns of collective decisions can be derived from the basic ability of animals to make probabilistic estimations in the presence of uncertainty. We build a decision-making model with two stages: Bayesian estimation and probabilistic matching.&#xd;&#xa;In the first stage, each animal makes a Bayesian estimation of which behavior is best to perform taking into account personal information about the environment and social information collected by observing the behaviors of other animals. In the probability matching stage, each animal chooses a behavior with a probability given by the Bayesian estimation that this behavior is the most appropriate one. This model derives very simple rules of interaction in animal collectives that depend only on two types of reliability parameters, one that each animal assigns to the other animals and another given by the quality of the non-social information. We test our model by obtaining theoretically a rich set of observed collective patterns of decisions in three-spined sticklebacks, Gasterosteus aculeatus, a shoaling fish species. The quantitative link shown between probabilistic estimation and collective rules of behavior allows a better contact with other fields such as foraging, mate selection, neurobiology and psychology, and gives predictions for experiments directly testing the relationship between estimation and collective behavior

    Patient dose reduction during voiding cystourethrography

    Get PDF
    Voiding cystourethrography (VCUG) is a commonly performed examination in a pediatric uroradiology practice. This article contains suggestions on how the radiation dose to a child from VCUG can be made ‘as low as reasonably achievable–(ALARA). The pediatric radiologist should consider the appropriateness of the clinical indication before performing VCUG and utilize radiation exposure techniques and parameters during VCUG to reduce radiation exposure to a child. The medical physicist and fluoroscope manufacturer can also work together to optimize a pulsed-fluoroscopy unit and further reduce the radiation exposure. Laboratory and clinical research is necessary to investigate methods that reduce radiation exposures during VCUG, and current research is presented here

    Experimental investigation of bidensity slurries on an incline

    Full text link
    We investigate the dynamics of bidensity slurries on an incline. The particle-fluid mixture consists of two species of negatively buoyant particles that have roughly the same size but significantly variant densities. This mismatch in particle densities induces or prevents settling depending on the relative amount of heavy to light particles, leading to complex regimes also found in the monodisperse case. In addition, when settling effects dominate within the thin film, we observe the phase separation down the incline between the particles and the liquid, as well as between two particle types. © 2014 Springer-Verlag Berlin Heidelberg
    corecore