282 research outputs found

    A proposal for Marchenko-based target-oriented full waveform inversion

    Full text link
    The Hessian matrix plays an important role in correct interpretation of the multiple scattered wave fields inside the FWI frame work. Due to the high computational costs, the computation of the Hessian matrix is not feasible. Consequently, FWI produces overburden related artifacts inside the target zone model, due to the lack of the exact Hessian matrix. We have shown here that Marchenko-based target-oriented Full Waveform Inversion can compensate the need of Hessian matrix inversion by reducing the non-linearity due to overburden effects. This is achieved by exploiting Marchenko-based target replacement to remove the overburden response and its interactions with the target zone from residuals and inserting the response of the updated target zone into the response of the entire medium. We have also shown that this method is more robust with respect to prior information than the standard gradient FWI. Similarly to standard Marchenko imaging, the proposed method only requires knowledge of the direct arrival time from a focusing point to the surface and the reflection response of the medium.Comment: 5 pages, 4 figures, 82th EAGE Conference & Exhibitio

    Patient-Reported and Patient-Recorded Outcomes in Interstitial Lung Diseases and Pulmonary Hypertension

    Get PDF
    The research described in this thesis is focused on translating and validating patient-reported outcome measures for Dutch patients with interstitial lung diseases and pulmonary hypertension (part 1), develop patient-recorded outcome measures (part 2), and interventions aimed at improving quality of life for patients (part 3)

    A home monitoring program including real-time wireless home spirometry in idiopathic pulmonary fibrosis

    Get PDF
    In idiopathic pulmonary fibrosis (IPF), home monitoring experiences are limited, not yet real-time available nor implemented in daily care. We evaluated feasibility and potential barriers of a new home monitoring program with real-time wireless home spirometry in IPF. Ten patients with IPF were asked to test this home monitoring program, including daily home spirometry, for four weeks. Measurements of home and hospital spirometry showed good agreement. All patients considered real-time wireless spirometry useful and highly feasible. Both patients and researchers suggested relatively easy solutions for the identified potential barriers regarding real-time home monitoring in IPF

    Filtering Deterministic Layer Effects in Imaging

    Get PDF
    Sensor array imaging arises in applications such as nondestructive evaluation of materials with ultrasonic waves, seismic exploration, and radar. The sensors probe a medium with signals and record the resulting echoes, which are then processed to determine the location and reflectivity of remote reflectors. These could be defects in materials such as voids, fault lines or salt bodies in the earth, and cars, buildings, or aircraft in radar applications. Imaging is relatively well understood when the medium through which the signals propagate is smooth, and therefore nonscattering. But in many problems the medium is heterogeneous, with numerous small inhomogeneities that scatter the waves. We refer to the collection of inhomogeneities as clutter, which introduces an uncertainty in imaging because it is unknown and impossible to estimate in detail. We model the clutter as a random process. The array data is measured in one realization of the random medium, and the challenge is to mitigate cumulative clutter scattering so as to obtain robust images that are statistically stable with respect to different realizations of the inhomogeneities. Scatterers that are not buried too deep in clutter can be imaged reliably with the coherent interferometric (CINT) approach. But in heavy clutter the signal-to-noise ratio (SNR) is low and CINT alone does not work. The “signal,” the echoes from the scatterers to be imaged, is overwhelmed by the “noise,” the strong clutter reverberations. There are two existing approaches for imaging at low SNR: The first operates under the premise that data are incoherent so that only the intensity of the scattered field can be used. The unknown coherent scatterers that we want to image are modeled as changes in the coefficients of diffusion or radiative transport equations satisfied by the intensities, and the problem becomes one of parameter estimation. Because the estimation is severely ill-posed, the results have poor resolution, unless very good prior information is available and large arrays are used. The second approach recognizes that if there is some residual coherence in the data, that is, some reliable phase information is available, it is worth trying to extract it and use it with well-posed coherent imaging methods to obtain images with better resolution. This paper takes the latter approach and presents a first attempt at enhancing the SNR of the array data by suppressing medium reverberations. It introduces filters, or annihilators of layer backscatter, that are designed to remove primary echoes from strong, isolated layers in a medium with additional random layering at small, subwavelength scales. These strong layers are called deterministic because they can be imaged from the data. However, our goal is not to image the layers, but to suppress them and thus enhance the echoes from compact scatterers buried deep in the medium. Surprisingly, the layer annihilators work better than intended, in the sense that they suppress not only the echoes from the deterministic layers, but also multiply scattered ones in the randomly layered structure. Following the layer annihilators presented here, other filters of general, nonlayered heavy clutter have been developed. We review these more recent developments and the challenges of imaging in heavy clutter in the introduction in order to place the research presented here in context. We then present in detail the layer annihilators and show with analysis and numerical simulations how they work

    Endomicroscopic and transcriptomic analysis of impaired barrier function and malabsorption in environmental enteropathy

    Get PDF
    Introduction: Environmental enteropathy (EE) is associated with growth failure, micronutrient malabsorption and impaired responses to oral vaccines. We set out to define cellular mechanisms of impaired barrier function in EE and explore protective mechanisms. Methods: We studied 49 adults with environmental enteropathy in Lusaka, Zambia using confocal laser endomicroscopy (CLE); histology, immunohistochemistry and mRNA sequencing of small intestinal biopsies; and correlated these with plasma lipopolysaccharide (LPS) and a zinc uptake test. Results: CLE images (median 134 for each study) showed virtually ubiquitous small intestinal damage. Epithelial defects, imaged by histology and claudin 4 immunostaining, were predominantly seen at the tips of villi and corresponded with leakage imaged in vivo by CLE. In multivariate analysis, circulating log-transformed LPS was correlated with cell shedding events (β = 0.83; P = 0.035) and with serum glucagon-like peptide-2 (β = -0.13; P = 0.007). Zinc uptake from a test dose of 25mg was attenuated in 30/47 (64%) individuals and in multivariate analysis was reduced by HIV, but positively correlated with GLP-2 (β = 2.72; P = 0.03). There was a U-shaped relationship between circulating LPS and villus surface area. Transcriptomic analysis identified 23 differentially expressed genes in severe enteropathy, including protective peptides and proteins. Conclusions: Confocal endomicroscopy, claudin 4 immunostaining and histology identify epithelial defects which are probably sites of bacterial translocation, in the presence of which increased epithelial surface area increases the burden of translocation. GLP 2 and other protective peptides may play an important role in mucosal protection in EE

    Single station Monitoring of Volcanoes Using Seismic ambient noise

    Get PDF
    Seismic ambient noise cross correlation is increasingly used to monitor volcanic activity. However, this method is usually limited to volcanoes equipped with large and dense networks of broadband stations. The single station approach may provide a powerful and reliable alternative to the classical “cross-stations” approach when measuring variation of seismic velocities. We implemented it on the Piton de la Fournaise in Reunion Island, a very active volcano with a remarkable multi-disciplinary continuous monitoring. Over the past decade, this volcano was increasingly studied using the traditional cross-correlation technique and therefore represents a unique laboratory to validate our approach. Our results, tested on stations located up to 3.5 km from the eruptive site, performed as well as the classical approach to detect the volcanic eruption in the 1-2 Hz frequency band. This opens new perspectives to successfully forecast volcanic activity at volcanoes equipped with a single 3-component seismometer

    The Spatial Cross-Correlation Method for Dispersive Surface Waves

    Get PDF
    Dispersive surface waves are routinely used to estimate the subsurface shear-wave velocity distribution, at all length scales. In the well-known Spatial Autocorrelation method, dispersion information is gained from the correlation of seismic noise signals recorded on the vertical (or radial) components. We demonstrate practical advantages of including the cross-correlation between radial and vertical components of the wavefield in a spatial cross-correlation method. The addition of cross-correlation information increases the resolution and robustness of the phase velocity dispersion information, as demonstrated in numerical simulations and a near-surface field study with active seismic sources, where our method confirms the presence of a fault-zone conduit in a geothermal field
    corecore