1,111 research outputs found

    Relationship between cooling rate and microsegregation in bottom-chilled directionally solidified ductile irons

    Get PDF
    This study explores the relationship between cooling rate and microsegregation of directionally solidified ductile iron. The unidirectional heat transfer system used in this research is made up of a copper mold kept chilled by circulating water and embedded in the bottom of Furan sand mold. Thermocouples are connected to the computer measuring system to record the cooling curves of the castings at a distance of 0, 30, 60 and 90 mm from the chilled copper mold surface. Alloys including Mn, Cr, Cu, Ni and Ti were added to the specimens. Electron microprobe analysis (EPMA) was employed to examine distribution of elements between the dendrite arms and nodular graphite. Results show that unidirectional heat transfer affects directly the solidification mode and microstructure of the casting. The cooling curves reveal that local solidification time increases with increasing distance from the chilled copper mold surface. Different solidification rates with corresponding microstructure and element segregation were observed in the same unidirectionally solidified casting. Local solidification time was closely related to element segregation. The effective segregation coefficient (Keff) calculated using the Scheil equation was found to vary, according to the stage of solidification. The actual segregation characteristics of complex alloys generally follow the Scheil equation

    PMD26 ECONOMIC EVALUATIONS FOR SCREENING AND TREATMENTS OF DIABETIC RETINOPATHY AND DIABETIC MACULAR EDEMA: A SYSTEMATIC REVIEW

    Get PDF

    Bayesian Semi-parametric Expected Shortfall Forecasting in Financial Markets

    Get PDF
    Bayesian semi-parametric estimation has proven effective for quantile estimation in general and specifically in financial Value at Risk forecasting. Expected short-fall is a competing tail risk measure, involving a conditional expectation beyond a quantile, that has recently been semi-parametrically estimated via asymmetric least squares and so-called expectiles. An asymmetric Gaussian density is proposed allowing a likelihood to be developed that leads to Bayesian semi-parametric estimation and forecasts of expectiles and expected shortfall. Further, the conditional autoregressive expectile class of model is generalised to two fully nonlinear families. Adaptive Markov chain Monte Carlo sampling schemes are employed for estimation in these families. The proposed models are clearly favoured in an empirical study forecasting eleven financial return series: clear evidence of more accurate expected shortfall forecasting, compared to a range of competing methods is found. Further, the most favoured models are those estimated by Bayesian methods

    Bayesian Assessment of Dynamic Quantile Forecasts

    Get PDF
    Methods for Bayesian testing and assessment of dynamic quantile forecasts are proposed. Specifically, Bayes factor analogues of popular frequentist tests for independence of violations from, and for correct coverage of a time series of, quantile forecasts are developed. To evaluate the relevant marginal likelihoods involved, analytic integration methods are utilised when possible, otherwise multivariate adaptive quadrature methods are employed to estimate the required quantities. The usual Bayesian interval estimate for a proportion is also examined in this context. The size and power properties of the proposed methods are examined via a simulation study, illustrating favourable comparisons both overall and with their frequentist counterparts. An empirical study employs the proposed methods, in comparison with standard tests, to assess the adequacy of a range of forecasting models for Value at Risk (VaR) in several financial market data series

    Chorea as a First Manifestation in Young Patients with Systemic Lupus Erythematosus Who Was Initially Diagnosed With Rheumatic Fever

    Get PDF
    Chorea is a rare manifestation of systemic lupus erythematosus (SLE). We report on a young patient with chorea who was diagnosed initially with rheumatic fever. Follow up and further evaluation confirmed the diagnosis of SLE and anti-phospholipid syndrome. Of special interest were the negative antiphospholipid (aPL) antibodies and the initial diagnosis of rheumatic fever which is still not uncommon problem in our region. The rarity of such presentation with joint and non specific increase of antistreptolysin O (ASO) titer might be the factors that led to an incorrect diagnosis. Early diagnosis and treatment of SLE and anti-phospholipid syndrome are very crucial and should be considered with such presentation

    Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis

    Get PDF
    Value-at-Risk (VaR) forecasting via a computational Bayesian framework is considered. A range of parametric models are compared, including standard, threshold nonlinear and Markov switching GARCH specifications, plus standard and nonlinear stochastic volatility models, most considering four error probability distributions: Gaussian, Student-t, skewed-t and generalized error distribution. Adaptive Markov chain Monte Carlo methods are employed in estimation and forecasting. A portfolio of four Asia-Pacific stock markets is considered. Two forecasting periods are evaluated in light of the recent global financial crisis. Results reveal that: (i) GARCH models out-performed stochastic volatility models in almost all cases; (ii) asymmetric volatility models were clearly favoured pre-crisis; while at the 1% level during and post-crisis, for a 1 day horizon, models with skewed-t errors ranked best, while IGARCH models were favoured at the 5% level; (iii) all models forecasted VaR less accurately and anti-conservatively post-crisi

    Bayesian Forecasting for Financial Risk Management, Pre and Post the Global Financial Crisis

    Get PDF
    Value-at-Risk (VaR) forecasting via a computational Bayesian framework is considered. A range of parametric models are compared, including standard, threshold nonlinear and Markov switching GARCH specifications, plus standard and nonlinear stochastic volatility models, most considering four error probability distributions: Gaussian, Student-t, skewed-t and generalized error distribution. Adaptive Markov chain Monte Carlo methods are employed in estimation and forecasting. A portfolio of four Asia-Pacific stock markets is considered. Two forecasting periods are evaluated in light of the recent global financial crisis. Results reveal that: (i) GARCH models out-performed stochastic volatility models in almost all cases; (ii) asymmetric volatility models were clearly favoured pre-crisis; while at the 1% level during and post-crisis, for a 1 day horizon, models with skewed-t errors ranked best, while IGARCH models were favoured at the 5% level; (iii) all models forecasted VaR less accurately and anti-conservatively post-crisi

    A quantum field-theoretical perspective on scale anomalies in 1D systems with three-body interactions

    Get PDF
    We analyze, from a canonical quantum field theory (QFT) perspective, the problem of one-dimensional particles with three-body attractive interactions, which was recently shown to exhibit a scale anomaly identical to that observed in two-dimensional (2D) systems with two-body interactions. We study in detail the properties of the scattering amplitude including both bound and scattering states, using cutoff and dimensional regularization, and clarify the connection between the scale anomaly derived from thermodynamics to the nonvanishing non-relativistic trace of the energy-momentum tensor

    Influence of micron WC addition on the microstructure and mechanical properties of ultrafine WC–Co cemented carbides at the elevated temperature

    No full text
    In this paper, the influence of micron-grained WC additions with the different grain sizes on the microstructure and hardness of ultrafine WC–Co cemented carbides at the elevated temperature were investigated by the scanning electron microscope and mechanical properties test. The Vickers hardness and transverse rupture strength of hardmetals were measured at temperatures ranging from room temperature to 800 °C. The results show that the addition of micron-sized WC particles can lead to the increase of fracture toughness and slow the decreasing of hardness at the elevated temperature.Досліджено вплив добавок WC з зернами різних мікронних розмірів на мікроструктуру і твердість надтвердого WC–Co-сплаву при підвищеній температурі за допомогою скануючого електронного мікроскопу і проведено випробування його механічних властивостей. Твердість за Віккерсом і поперечну міцність на розрив твердих металів вимірювали у діапазоні від кімнатної температури до 800 °С. Результати показали, що добавка WС-частинок мікронних розмірів може призвести до збільшення тріщиностійкості і уповільнити зменшення твердості при підвищеній температурі.Исследовано влияние добавок WС с зернами различных микронных размеров на микроструктуру и твердость сверхтвердого WC–Co-сплава при повышенной температуре с помощью сканирующего электронного микроскопа и проведено испытание его механических свойств. Твердость по Виккерсу и поперечную прочность на разрыв твердых металлов измеряли в диапазоне от комнатной температуры до 800 °C. Результаты показали, что добавка WС-частиц микронных размеров может привести к увеличению трещиностойкости и замедлить уменьшение твердости при повышенной температуре
    corecore