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Abstract

Methods for Bayesian testing and assessment of dynamic quantile forecasts are

proposed. Specifically, Bayes factor analogues of popular frequentist tests for inde-

pendence of violations from, and for correct coverage of a time series of, quantile

forecasts are developed. To evaluate the relevant marginal likelihoods involved, ana-

lytic integration methods are utilised when possible, otherwise multivariate adaptive

quadrature methods are employed to estimate the required quantities. The usual

Bayesian interval estimate for a proportion is also examined in this context. The

size and power properties of the proposed methods are examined via a simulation

study, illustrating favourable comparisons both overall and with their frequentist

counterparts. An empirical study employs the proposed methods, in comparison

with standard tests, to assess the adequacy of a range of forecasting models for

Value at Risk (VaR) in several financial market data series.

Key words:Bayesian Hypothesis testing; Bayes factor; asymmetric-Laplace distribution;

Value-at-Risk; quantile regression.

1 Introduction

A wealth of recent interest in dynamic quantile modelling and forecasting creates a

demand for tests and methods to assess the accuracy of quantile predictions. A prime
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example from the financial markets is Value-at-Risk (VaR), which corresponds to the

multiple of a quantile of the financial return distribution. Following the Basel II Capital

Accord, VaR is widely used in practice for risk management and capital allocation, to

protect against large negative market movements in asset prices. VaR is now the primary

financial risk measure used in banking and by financial institutions. The accord further

advises risk managers to regularly back-test the VaR methods being used, using at least

one year of historical data to compare actual returns with VaR forecasts.

Four well-known formal back-testing methods for quantile (VaR) forecasts are the

unconditional coverage (UC) test of Kupiec (1995), the conditional coverage (CC) test of

Christoffersen (1998), the dynamic quantile (DQ) test of Engle and Manganelli (2004),

and the VaR Quantile Regression (VQR) test of Gaglianone et al. (2011). Berkowitz,

Christofferson and Pelletier (2011) developed a unified Lagrange Multiplier framework for

VaR assessment, incorporating these tests (except the VQR). Gaglianone et al. (2011)

highlighted that the VQR and DQ tests were over-sized in general, more-so in smaller

samples, but have higher size-adjusted power than the UC and CC tests. The latter

outcome highlights that the VQR and DQ tests use more information, and in a mostly

more effective manner, than the binary variables which the UC and CC tests solely rely

on; whilst the former result indicates a potential opportunity to develop better tests,

being the goal of this paper.

Bayesian methods are widely employed for forecasting Value at Risk (VaR); see e.g.

Hoogerheide and van Dijk (2010), Chen et al. (2012a, 2012b) and Gerlach and Chen

(2008), etc. However, Bayesian methods for back-testing are not prevalent, or apparently

even existing, in the literature. Thus, such Bayesian papers typically revert to frequentist

tests to assess and compare VaR models. The major goal of this paper is to fill this

gap in the literature by proposing formal back-testing methods for dynamic quantile

predictions that are within a Bayesian framework. This is achieved by developing a suite

of Bayesian methods that are roughly analogous to the existing frequentist tests, as well

as employing some common Bayesian methods that are not commonly applied in this

area. Most of the proposed methods are based on Bayes factors, which require estimation

of marginal likelihoods, for which we suggest analytic methods when feasible, otherwise

we employ either multivariate quadrature methods or other approximation to estimate
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these quantities.

A second goal of this paper is to assess whether the proposed Bayesian testing frame-

work, that does not rely on large sample or asymptotic approximations to null distribu-

tions, could be more effective in testing VaR, and other dynamic quantile, forecasting

methods; as judged by their sampling properties. As with the UC, CC, DQ and VQR

tests, the proposed Bayesian tests will not depend on the model that generated the data,

nor on the method of estimation of the model parameters involved in forecasting dynamic

quantiles. In contrast to the common situation of Bayesian forecasting methods being

assessed via frequentist tests, the proposals in this paper will allow both Bayesian and

frequentist forecasting methods to be assessed via Bayesian tests.

The article is organized as follows: Section 2 reviews the evaluation of quantile forecast

accuracy via existing tests; Section 3 introduces Bayesian hypothesis testing via various

test procedures; Sections 4 and 5 present and further discuss the results from a simulation;

Section 6 illustrates an empirical study with a range of competing VaR methods; while

concluding remarks appear in Section 7.

2 Evaluating quantile forecast accuracy

VaR is now a standard tool in risk management. It is an estimate (forecast) of the

size of the minimum potential loss, over a given time horizon, with a specified probability,

for a financial position. Let yt denote the return observation at time t, then VaR (V aRt)

at level α can be defined via:

Pr(yt < −VaRt|Ft−1) = α,

where Ft−1 is the past information, available at time t− 1. For a forecast sample period,

the observed violation rate is the number of violations, i.e. return observations that are

more extreme than their respective VaR forecast (yt < −VaRt) = 1), divided by the

forecast sample size n.

Kupiec (1995)’s likelihood ratio (LR) UC test examines the hypothesis that the true

violation rate is equal to α, as required for an accurate VaR forecasting method. The LR
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test statistic is:

LRuc = 2
{

log[α̂n1(1− α̂)n−n1 ]− log[αn1(1− α)n−n1 ]
}
,

where n1 is the number of violations in n observations and α̂ is the observed sample

violation rate. This assesses whether the binary violation indicator series I(yt < −VaRt),

t = 1, . . . , n could have an incidence rate equal to α, or not. Under the null, which also

assumes the binary series is i.i.d. Bernoulli, LRuc tends towards a χ2(1) distribution as n

gets large.

Christoffersen (1998) develops a conditional coverage (CC) joint test, incorporating

the UC test, that the binary violations are independent and occur with nominal rate α;

the joint LR test is:

LRcc = −2 log[αn1(1− α)n−n1 ] + 2 log[(1− π01)n00πn01
01 (1− π11)n10πn11

11 ]

where nij is the number of occurrences of It = j, It−1 = i, for i, j = 0, 1, where It = I(yt <

−VaRt). Under the alternative, the violations follow a two-state Markov chain process,

where πij = mij/
∑
jmij, i, j = 0, 1, are the observed Markov transition rates, which

violates the independence assumption of the null. Under the null, LRcc tends towards

a χ2
2 distribution as n gets large. The result LRcc = LRUC + LRind, where LRind is

the independence test of Christoffersen (1998), follows from the definitions of these test

statistics.

Engle and Manganelli (2004) develop the DQ test, another joint test for correct

coverage and independence, but one that can employ more than just the binary violation

series. The null is H0 : I(yt < −VaRt) are an i.i.d. series with rate α. A series of

“hits”, Ht = It−α, are then calculated. Under the null it is straightforward to show that

E(Ht) = 0 and E(HtWit) = 0, where W contains q relevant explanatory variables that

are in the information set at time t − 1, when the forecast VaRt is made. The DQ test

statistic examines whether all parameters in a regression of H on W equal zero, calculated

as:

DQ(q) =
H ′W (W ′W )

−1
W ′H

α(1− α)
,

which is analogous to a regression F statistic. Under the null, DQ(q) tends to a χ2
q

distribution as n gets large. As in Engle and Manganelli (2004), we employ lagged hits
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and the VaR forecast itself as explanatory variable choices, i.e. W
′
t = (1, Ht−1,VaRt)

(denoted as DQ1) and W
′
t = (Ht−1, . . . , Ht−4,VaRt) (denoted as DQ4).

Gaglianone et al. (2011) employed direct “Mincer-Zarnowitz” quantile regression for

the αth conditional quantile of yt:

Qyt(α|Ft−1) = β0 + β1V aRt, for all α ∈ (0, 1),

subsequently developing a relevant test to assess forecast accuracy for a VaR method;

their test employs the actual data, not violation indicators, as well as the VaR forecast

series itself, thus employing more information than the UC, CC and DQ tests. If the

VaR forecasts are accurate, then β0 = 0, β1 = −1 in this quantile regression specification.

Gaglianone et al. (2011) test that hypothesis, i.e. θ = (β0, β1 − 1)
′

= 0 using the statis-

tic VQR = θ̂
′
(
Σ̂
)−1

θ̂, that asymptotically follows a χ2
2 under the null hypothesis. We

followed Gaglianone et al. (2011) and Koenker and Machado (1999)’s recommendations

here, in particular in estimation of Σ and its components. See those papers for details.

These are the four most commonly applied tests to assess the accuracy of quantile

forecasts. Though they employ different information sets, we will employ them as rec-

ommended by their author developers. In the next section we address the gap in the

literature regarding Bayesian assessment of quantile forecasts.

3 Bayes Factors and Hypothesis Testing

In a Bayesian framework, hypothesis testing and model comparison problems can be

tackled via posterior credible intervals or via marginal likelihoods that are often trans-

lated into Bayes factors (BFs). BFs are estimated via marginal likelihoods: p(y|Mk) =∫
p(y|θ,Mk)p(θ|Mk)dθ where model Mk is generally preferred over Mj if BF = p(y|Mk)

p(y|Mj)
> 1.

BFs can also be employed in hypothesis testing of θ = θ0, where the hypothesis is rejected

if p(y|θ0,M)
p(y|M)

< 1.

3.1 Bayesian testing for unconditional and conditional coverage

The null hypothesis in the UC test is H0 : α = α∗, where α∗ is the nominal quantile

level. This hypothesis can be directly tested using a Bayesian credible interval for α.
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Under an assumed binomial Bin(m,α) distribution for the number of violations n1, and

employing a conjugate Beta(a, b) prior, a Beta(n1 + a, n − n1 + b) posterior distribution

results for p(α|I). As standard, we choose both a flat Beta(a = 1, b = 1) prior and the

Jeffreys’ Beta(a = 0.5, b = 0.5) prior, and simply form the 95% posterior credible interval

from the resulting Beta(n1 + a, n − n1 + b) distribution, employing the 2.5th and 97.5th

quantiles in each case. The hypothesis α = α∗ is rejected whenever α∗ is outside the

obtained credible interval; we label these methods “Bp11” and “Bp55” respectively. See

Gelman et al. (2005, Chapter 2), Tuyl, Gerlach and Mengersen (2008) and Brown et

al (2001), for more details and discussion on Bayesian inference for proportions and the

frequentist properties of such.

A BF test, roughly analogous to the frequentist likelihood ratio UC test is also pro-

posed, where:

BFUC =
αn1(1− α)n−m1∫

πn1(1− π)n−n1p(π)dπ

involves the Binomial likelihood evaluated under the null, divided by the marginal likeli-

hood, where π ∼ Beta(a,b) and where a = b = 1 is chosen, as standard. Then, H0 : α = α∗

is rejected whenever:

BFUC =
αn1(1− α)n−n1

B(n1 + 1, n− n1 + 1)
< 1 ,

where B(c, d) = Γ(c)Γ(d)
Γ(c+d)

is the standard incomplete Beta integral and Γ is the standard

Gamma function.

BF analogues are also developed for the independence and CC tests of Christofferson

(1998). First, the null model is M0 : It ∼ i.i.d. Binomial(n, α) vs M1 : It|It−1 ∼

Binomial(n, πi,j), i, j = 0, 1, where the alternative is a two-state Markov chain and πi,j =

Pr(It = j, It−1 = i). Ignoring the combinatorial terms, as in Christofferson (1998), and

after integration, the BF is the ratio of marginal likelihoods:

BFind =
B(n1 + 1, n− n1 + 1)

B(n01 + 1, n00 + 1)B(n11 + 1, n10 + 1)

where the null model M0 is rejected whenever BFind < 1. For the CC BF method we

have:

BFCC =
αn1(1− α)n−n1

B(n01 + 1, n00 + 1)B(n11 + 1, n10 + 1)
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where nij is the number of instances where It = j, It−1 = i for i, j = 0, 1 and t = 2, . . . , n.

Analogous to the relationship between the UC, independence and CC LR tests, here

BFCC = BFUC × BFind. The BFUC involves the binomial likelihood evaluated under

the null, divided by the marginal likelihood. The null model M0 is rejected whenever

BFCC < 1.

3.2 Bayesian DQ testing

A Bayes factor requires an assumed model and data distribution to produce a like-

lihood. The DQ test employs the series of “hits” Ht = It − α, t = 1, . . . , n and fits a

regression:

Ht = β0 +
(q−1)∑
i=1

βiWi,t + εt

To get a likelihood, a distribution can be assumed for εt. The simplest, but admittedly

non-intuitive, choice is εt ∼ N(0, σ2). This leads to

p(H|β, σ2) = (2π)−0.5(n−q−1)σ−
n−q−1

2 exp

− 1

2σ2

n∑
t=q+1

ε2t

 .

σ2 is a nuisance parameter here, but under the standard Jeffreys’ prior p(σ2) ∝ σ−2 it

can be analytically integrated out, giving:

BFDQ =

[
0.5

∑n
t=q+1H

2
t

]−m/2
∫
. . .
∫ [

0.5
∑n
t=q+1 ε

2
t

]−n/2
p(β)dβ

.

Under a proper Gaussian prior on β, e.g. β|σ2 ∼ N(0, Cσ2) (where C is a diagonal matrix

with large elements), the denominator can be integrated analytically (e.g. as in Smith and

Kohn, 1996) and BFDQ calculated. Under the null all β = 0, which is rejected whenever

BFDQ< 1. We employ the same regressors as in the DQ statistics, giving BFDQ1 and

BFDQ4 procedures.

A more intuitive BF method, also analogous to the DQ test, is obtained via a standard

logistic regression. Here we let:

Pr(It = 1|Wt) = logit

β0 +
(q−1)∑
i=1

βiWi,t



7



, where logit(x) = (1 + exp(−x))−1. The null hypothesis has β∗0 = log
(

α
1−α

)
and β∗i =

0; i = 1, . . . , q − 1. The BFLDQ statistic is formulated as:

BFLDQ =
p(I|β = β∗)∫
p(I|β)p(β)dβ

.

A proper Gaussian prior on β is employed, e.g. β|σ2 ∼ N(0, Cσ2) (where C is a diagonal

matrix with large elements) to evaluate the denominator. However, this prior is not

conjugate and the integral cannot be evaluated analytically using known methods. To

estimate this integral, the method in Kass and Raftery (1995) based on approximating

the integrand by a second order Taylor series expansion and then analytically integrating

the resulting Gaussian density function is employed. This method leads to:

∫
exp(−g(β)2)dβ ≈ (2π)0.5q exp(−g(β̂)2)

∣∣∣g′′(β)/2
∣∣∣0.5
β=β̂

,

where g(β) = −2 log (p(I|β)p(β)). The term g
′′
(β) is the matrix of 2nd derivatives of g(.),

which if Xt = (1W1,t . . .Wq−1,t), is given by:

n∑
t=1

XtX
′

t × logit(Xtβ) (1− logit(Xtβ)) .

Here again the same regressors as in the DQ statistics are used, with focus on q = 2 (1

lag) and q = 5 (4 lags), giving the BFLDQ1 and BFLDQ4 statistics.

3.3 Bayesian VQR testing

Koenker and Machado (1999) note that quantile regression estimation, usually per-

formed by minimising the quantile distance function:

min

β
∑
t

ut [α− I(ut < 0)]

is equivalent to a maximum likelihood (ML) estimation procedure when assuming i.i.d.

skewed Laplace errors, i.e. u ∼ SL(0, σ, α), so that:

pα(u) =
α(1− α)

σ
exp

[
−
(
u [α− I(u < 0)]

σ

)]
.

The ML and usual quantile regression estimates for β are mathematically equivalent in

this case.
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The quantile regression model for the αth conditional quantile of yt, regressed against

its VaR forecast, can be written:

Qyt(α|Ft−1) = β0 + β1V aRt, for all α ∈ (0, 1).

If the VaR forecasts are accurate, then the parameters should conform with β0 = 0, β1 = 1,

as assessed by the VQR test of Gaglianone et al. (2011).

For the BFVQ procedure, again assuming a Jeffreys prior on σ and integrating it out

gives:

p(u|β) = αn(1− α)nΓ(n)

[
n∑
t=1

ut(α− I(ut < 0))

]−n
.

Thus, the BFVQ statistic is:

BFVQ =
p(u|β0 = 0, β1 = 1)∫ ∫
p(u|β)p(β)dβ0dβ1

where the null of β0 = 0, β1 = 1 is rejected whenever BFV Q < 1. The denominator above

is a double integral over the bivariate real line. We employ a diffuse, proper Gaussian

prior on β, then transform to the region (−1, 1) × (−1, 1) and use adaptive quadrature

methods to numerically estimate this integral. This takes less than half a second on a

standard laptop using Matlab software and function “dblequad”.

4 Simulation study

The empirical properties of the proposed Bayesian methods are assessed via a sim-

ulation study. The same simulation setting as in Gaglianone et al. (2011) is employed.

The true model is a GARCH(1,1), specified as:

σ2
t = 0.1 + 0.1y2

t−1 + 0.85σ2
t−1 ; yt = σtεt ; εt ∼ N(0, 1)

where VaRt,α = σtΦ
−1(α). To assess power an incorrect, but common, historical simula-

tion (HS) VaR estimator is employed:

HS250t,α = Q̂α(yt−250, . . . , yt−1)
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using the sample percentile of the last 250 observations as a 1-step-ahead VaR forecast.

25000 replications of data, using sample sizes n = 250, 500, 1000 and 2500, are simulated in

each case. For each data set, the UC, CC, IND, DQ1, DQ4 and VQR tests are conducted.

Further, the Bp11, Bp55 intervals are also calculated, as are the BFUQ, BFIND, BFCC,

BFDQ1, BFDQ4 and BFVQ statistics. These are all calculated under the null, using

the true VaRt,α series, and then separately calculated under the alternative, using the

estimated HS250t,α series. α = 0.05, 0.01 are used for the quantile levels.

So as to compare the methods on an equal footing we consider frequentist size and

power as well as empirically adjusted size and size-adjusted power. This is standard

practice when comparing frequentist tests, but is not standard for Bayesian methods.

Whilst BF methods generally use BF = 1 as the threshold for a decision rule, there is

no reason why that point should have a frequentist size equal to nominal (here 5%). To

properly compare the sampling properties of all these tests, we thus consider both the

unadjusted and adjusted size and power characteristics of each. Such will allow direct,

fair and objective comparison of all methods in Sections 2 and 3 on an equitable basis.

Table 1 shows the empirical estimates for size and empirically adjusted size, across

all the methods employed at α = 0.05 for n = 250, 500. Also shown are the empirical

5% points for all methods, calculated via relevant sample percentiles across the 25000

replications of each test statistic under the null hypothesis. These are the thresholds used

to calculate the empirically adjusted size and size-adjusted power below; i.e. adjusted size

is the observed percentage of test statistics, across the 25000 replications, that are beyond

the empirical 5% threshold, all calculated under the null hypothesis. Size-adjusted power

is the observed percentage of test statistics beyond the same empirical threshold, when

calculated under the incorrect HS VaR estimator. There is no reason why the point BF= 1

should be the 95th percentage point for the sampling distribution of any BF statistic, so

size for the BF methods is not particularly relevant, but is reported as a reference for

comparison. Adjusted size is, however, relevant to the comparison of all methods.

When α = 0.05 and n = 250, only the VQR and DQ1 tests achieve close to a true

nominal size, with 4.7%, 5.5% respectively, whilst the DQ4 is quite over-sized and the

IND is quite under-sized; however the DQ1, DQ4, VQR, BFDQ1, BFDQ4 and BFVQ

all achieve (very close to) correct adjusted sizes of exactly 5%. Tests whose empirical
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Table 1: Size, empirical threshold and adjusted size for nominal 5% tests of 1-step-ahead

quantile forecasts at α = 0.05.

n=250 n=500

Method Size threshold adj. size Size threshold adj. size

UC 0.0623 4.040 0.0482 0.0548 3.888 0.0400

BFUC 0.0132 0.218 0.0437 0.0074 0.188 0.0400

Bp11 0.0403 (5,18) 0.0535 0.0512 (16,34) 0.0512

Bp55 0.0594 (5,18) 0.0535 0.0512 (16,34) 0.0512

IND 0.0179 2.808 0.0436 0.0337 3.581 0.0416

BFIND 0.0365 0.758 0.0496 0.0222 0.493 0.0498

CC 0.0422 5.226 0.0492 0.0400 5.751 0.0497

BFCC 0.0036 0.088 0.0460 0.0017 0.042 0.0487

DQ1 0.0551 8.024 0.0500 0.0471 7.666 0.050

BFDQ1 0.0018 0.00025 0.0500 0.0002 5.69×10−5 0.050

DQ4 0.0669 13.833 0.0500 0.0544 12.877 0.050

BFDQ4 0.0005 1.574×10−7 0.0500 0.00004 8.13×10−9 0.050

BFLDQ1 0.0796 7.376 0.0500 0.4722 3.45×107 0.050

BFLDQ4 0.0134 1.276×10−5 0.0500 0.1734 4.66×1013 0.050

VQR 0.0470 5.774 0.0500 0.0559 6.363 0.050

BFVQ 0.1920 113.321 0.0500 0.1599 99.315 0.050

The correct, nominal thresholds are UC, IND 3.84; CC, VQ 5.99; DQ1 7.81; DQ4

12.59
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distributions are discrete, with fixed values depending on the number of violations, i.e.

UC, BFUC, Bp11, Bp55, cannot be so accurately corrected, as neither can the IND test.

The threshold entries for Bp11 and Bp55 (5,18) indicate an approximate 95% (i.e. 94.65%)

prediction interval for the number of violations under the null hypothesis. For n = 500

the Bp11, Bp55 methods have the closest to nominal size (5.1%), followed by DQ1 (4.7%);

while for most methods the corrected size is exactly, or very close to, nominal, excepting

UC, BFUC and IND.

Table 2 shows the empirical estimates for size and then adjusted size across all the

methods employed at α = 0.05 for n = 1000, 2500. Also shown are the empirical 5%

points for the methods across the 25000 replications used to calculate the adjusted size

and size-adjusted power.

At n = 1000, the Bp11, Bp55 are again closest to nominal size, with the VQR and

DQ4 methods also achieving very close to nominal (5.1%); the IND test is well over-

sized; however all methods achieve corrected sizes of close to or exactly equal to 5%.

The threshold entries for Bp11 and Bp55 (37,63) indicate an approximate 95% prediction

interval for the number of violations when n = 1000 under the null hypothesis. For

n = 2500 the DQ4 has the closest to nominal size (5.02%) and for all methods the

corrected size is very close to the nominal 5% level.

Table 3 shows the empirical estimates for power and size-adjusted power across all the

methods employed at α = 0.05. At n = 250 three methods stand out with power: BFVQ,

DQ1 and DQ4; however we know from Table 1 that all of these are over-sized. When using

the thresholds in Table 1 to calculate size-adjusted power the single stand-out method

is clearly BFDQ1 with ∼ 43%; BFDQ4, DQ1 and DQ4 are next best with ∼ 35%, then

BFVQ with 30%. To examine this result in more detail, consider Figure 1(a), showing

two times the logarithm of the BFDQ1 and DQ1 statistics, plot against the number of

violations from the incorrect HS 5% VaR estimator. As expected, both methods reject the

HS estimator for very low and very high numbers of violations (e.g. Bp11 rejects outside

of (5,18)). However, unlike the Bp11, Bp55, UC and BFUC methods, both BFDQ1

and DQ1 also have plenty of rejections inside the range (5,18): i.e. for violation series

showing ”significant” correlation. This explains the higher size-adjusted power achieved

by DQ1 and BFDQ1 (and also DQ4, BFDQ4, BFVQ, CC, BFCC, etc) over the Bp11,
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Table 2: Size, empirical threshold and adjusted size for nominal 5% tests of 1-step-ahead

quantile forecasts at α = 0.05.

n=1000 n=2500

Method Size threshold adj. size Size threshold adj. size

UC 0.0534 3.895 0.0534 0.0530 3.867 0.0530

BFUC 0.0043 0.130 0.0430 0.0024 0.071 0.0478

Bp11 0.0492 (37,63) 0.0492 0.0480 (104,146) 0.0480

Bp55 0.0492 (37,63) 0.0492 0.0544 (104,146) 0.0480

IND 0.0840 4.643 0.0487 0.0525 3.951 0.0498

BFIND 0.0168 0.421 0.0486 0.0123 0.320 0.0500

CC 0.0572 6.231 0.0500 0.0549 6.301 0.0500

BFCC 0.0007 0.023 0.0492 0.0004 0.010 0.0500

DQ1 0.0470 7.680 0.0500 0.0482 7.739 0.0500

BFDQ1 0.0000 1.724×10−5 0.0500 0.0000 3.759×10−6 0.0499

DQ4 0.0512 12.694 0.0500 0.0502 12.599 0.0500

BFDQ4 0.0000 7.025×10−10 0.0500 0.0000 3.517×10−11 0.0500

BFLDQ1 0.9071 1.418×1024 0.0500 0.9993 1.402×1090 0.0500

BFLDQ4 0.6962 3.467×10132 0.0500 0.9996 exp(3884.7) 0.0500

VQR 0.0511 6.042 0.0500 0.0478 5.911 0.0500

BFVQ 0.1177 45.142 0.0500 0.0481 0.881 0.0500

The correct, nominal thresholds are UC, IND 3.84; CC, VQ 5.99; DQ1 7.81; DQ4

12.59

13



Figure 1: Two times the logarithm of the BFDQ1 (diamond) and DQ1 (circle) statistics

against number of violations under the HS quantile estimator at n = 250; (a) 5% HS; (b)

1% HS. The horizontal lines are two times the logarithm of the empirical 5% points of

the DQ1 (black) and BFDQ1 (grey) statistics.
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Bp55, UC and BFUC methods. The extra power of BFDQ1 over DQ1 is achieved through

rejecting more when the number of violations is comparatively low, specifically for 3-14

violations; the DQ1 has more rejections than BFDQ1 when 15-28 violations are observed,

but the differences in rejection frequencies here are much smaller than they are for 3-14

violations; as shown in Figure 2(a). Thus, at n=250 and 5% VaR forecasting, the BFDQ1

appears to have much higher power than DQ1 at detecting correlation in the violation

series, especially when the number of violations is small (approximately 3-14 violations),

contributing to an overall higher size adjusted power in Table 3 when n = 250.

At n = 500, the two methods with highest size-adjusted power for 5% quantile fore-

casting are: BFDQ4 and BFDQ1 with ∼ 50%, followed by DQ4, DQ1 with 49%, 46%

and then BFVQ with 34%. The BFDQ4 is only marginally preferred here. The BFDQ4

(BFDQ1) test rejects more than the DQ4 (DQ1) test when the number of violations is

between 8 and 27 (12 and 28), whilst the DQ4 rejects more for 28-46 (DQ1 for 29-42)

violations: again the BFDQ statistics have slightly more power to detect correlated vio-

lations when there are lower numbers of violations, compared to the DQ tests; however,

in this case things even out so that the Bayesian and frequentist DQ method’s size-

adjusted powers are close to comparable in each case. For n = 1000, again the BFDQ4

is marginally the highest size-adjusted power, followed closely by the DQ4, then with

BFDQ1 marginally out-performing the DQ1. The BFDQ4 (BFDQ1) test rejects more

than the DQ4 (DQ1) test when the number of violations is between 33 and 52 (33 and

55), whilst the DQ4 rejects more for 53-73 (DQ1 for 56-71) violations: again the BFDQ

statistics have slightly more power to detect correlation at lower numbers of violations,

compared to the DQ tests, with the result reversed for higher violation numbers. This

is illustrated by Figure 3(a), comparing DQ1, BFDQ1 and BFLDQ tests in terms of re-

jection rates against number of violations when n = 1000. Clearly, the BFLDQ methods

are not at all powerful at 5%, compared to the BFDQ and DQ methods.For n = 2500,

similar results are obtained, but with a marked increase in size-adjusted power for the

BFDQ, DQ, BFVQ and VQR methods. Again the BFDQ4 methods marginally performs

the best with very high size-adjusted power of 97.4%, closely matched by DQ4 and then

followed closely by BFDQ1, DQ1 and BFVQ, which marginally out-performs the VQR.

In summary for 5% quantile forecasting: the BFDQ1 method clearly out-performed

15



Table 3: Power and two estimates of size-adjusted power for nominal 5% tests of 1-step-

ahead quantile forecasts at α = 0.05.

n=250 n=500 n=1000 n=2500

Method Power Size-adj. Power Size-adj. Power Size-adj. Power Size-adj.

UC 0.159 0.130 0.057 0.051 0.025 0.025 0.026 0.026

BFUC 0.068 0.134 0.012 0.051 0.002 0.024 0.0003 0.026

Bp11 0.135 0.152 0.068 0.068 0.035 0.035 0.029 0.029

Bp55 0.160 0.152 0.068 0.068 0.035 0.035 0.029 0.029

IND 0.087 0.146 0.159 0.169 0.260 0.215 0.510 0.500

BFIND 0.143 0.174 0.163 0.258 0.228 0.346 0.384 0.559

CC 0.161 0.182 0.132 0.147 0.191 0.188 0.424 0.417

BFCC 0.050 0.194 0.036 0.194 0.035 0.255 0.087 0.459

DQ1 0.364 0.349 0.447 0.456 0.625 0.634 0.945 0.946

BFDQ1 0.039 0.426 0.020 0.506 0.028 0.673 0.110 0.925

DQ4 0.387 0.343 0.505 0.492 0.709 0.706 0.972 0.972

BFDQ4 0.019 0.360 0.009 0.500 0.013 0.710 0.063 0.973

BFLDQ1 0.103 0.066 0.465 0.043 0.981 0.031 1.000 0.025

BFLDQ4 0.051 0.210 0.391 0.136 0.963 0.175 1.000 0.338

VQR 0.159 0.165 0.272 0.260 0.477 0.473 0.873 0.877

BFVQ 0.565 0.309 0.566 0.336 0.649 0.431 0.920 0.926
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Figure 2: Rates of rejection for the BFDQ1 (circle) and DQ1 (diamond) statistics against

number of violations under the HS quantile estimator at n = 250; (a) 5% HS; (b) 1% HS.
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all other methods when n = 250 regarding size-adjusted power. For n > 250, the BFDQ4

method marginally out-performed all other methods on this criterion, closely followed by

the DQ4, BFDQ1 and DQ1 methods, usually in that order. The out-performance in size-

adjusted power is attributable to more accurate detection of autocorrelation in violations

from the HS estimator, when the observed violation numbers were comparatively small.

Further, the BFVQ test had higher size-adjusted power than the VQR test, except when

n = 1000. The BFLDQ methods performed quite poorly in comparison.

Table 4 shows the empirical estimates for size and then adjusted size across all the

methods employed at α = 0.01 for n = 250, 500. Also shown are the empirical 5% points

for the methods. Again, empirical size for the BF methods is only reported as a reference

for comparison.

At n = 250, the DQ1 test achieves closest to the true nominal size, with 5.4%, followed

by BP11 (4.2%); whilst the UC, DQ4, Bp55 and VQR are well over-sized, and the IND

and CC are well under-sized. Only the VQR and BFVQ tests achieve correct adjusted

sizes of 5%; whilst the UC, IND, BFIND, CC and BFCC adjusted sizes are not close

to nominal. The ”thresholds” for Bp11 and Bp55 of (0,5) indicate an approximate 95%

prediction interval for the number of violations under the null. For n = 500 VQR (3.9%)

and Bp11 (3.7%) have the closest to nominal sizes, but most methods have a corrected

size that is reasonably close to nominal, except UC and CC.

Table 5 shows the empirical estimates for size and then adjusted size across all the

methods employed at α = 0.01 for n = 1000, 2500. Also shown are the empirical 5%

points for the methods across the 25000 replications used to calculate the adjusted size

and size-adjusted power.

At n = 1000, only the UC and Bp55 methods achieve close to the true nominal size (∼

5.5%), whilst the DQ1, DQ4 (and BFVQ) are well over-sized; however all methods achieve

corrected sizes of close or exactly equal to 5%, except BFUC and CC. The threshold entries

for Bp11 and Bp55 (5,16) indicate an approximate 95% prediction interval for the number

of violations when n = 1000 under the null. For n = 2500 the VQR test has the closest

to nominal size (5.1%), whilst most methods achieve an adjusted size close to nominal,

except UC and BFUC.

Table 6 shows the empirical estimates for power and size-adjusted power across all
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Table 4: Size, empirical threshold and adjusted size for nominal 5% tests of 1-step-ahead

quantile forecasts at α = 0.01.

n=250 n=500

Method Size threshold adj. size Size threshold adj. size

UC 0.095 5.025 0.0154 0.071 4.813 0.0200

BFUC 0.004 0.060 0.0422 0.002 0.060 0.0378

Bp11 0.042 (0,5) 0.0399 0.037 (1,9) 0.0374

Bp55 0.125 (0,5) 0.0399 0.073 (1,9) 0.0374

IND 0.013 0.296 0.0368 0.016 0.991 0.0500

BFIND 0.023 1.000 0.0216 0.033 0.715 0.0464

CC 0.007 5.025 0.0310 0.017 4.817 0.0307

BFCC 0.0008 0.049 0.0367 0.001 0.030 0.0445

DQ1 0.054 8.924 0.0460 0.073 12.135 0.0497

BFDQ1 0.007 8.391×10−5 0.0460 0.007 0.0030 0.0500

DQ4 0.096 26.250 0.0460 0.168 21.172 0.0496

BFDQ4 0.008 1.577×10−6 0.0458 0.010 1.173×10−5 0.0497

BFLDQ1 0.001 0.0011 0.0460 0.007 0.0039 0.0497

BFLDQ4 0.000 4.692×10−8 0.0458 0.000 6.532×10−8 0.0496

VQR 0.070 8.016 0.0500 0.039 5.037 0.0500

BFVQ 0.569 1.845×1010 0.0500 0.508 9.199×1010 0.0500

The correct, nominal thresholds are UC, IND 3.84; CC, VQ 5.99; DQ1 7.81; DQ4

12.59
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Table 5: Size, empirical threshold and adjusted size for nominal 5% tests of 1-step-ahead

quantile forecasts at α = 0.01.

n=1000 n=2500

Method Size threshold adj. size Size threshold adj. size

UC 0.0548 4.091 0.0548 0.0430 3.752 0.0584

BFUC 0.0024 0.054 0.0357 0.0014 0.036 0.0430

Bp11 0.0362 (5,16) 0.0546 0.0529 (16,34) 0.0529

Bp55 0.0546 (5,16) 0.0546 0.0424 (16,34) 0.0529

IND 0.0192 2.290 0.0495 0.0171 1.888 0.0462

BFIND 0.0275 0.611 0.0495 0.0154 0.305 0.0456

CC 0.0264 4.738 0.0383 0.0284 4.897 0.0485

BFCC 0.0012 0.011 0.0447 0.0002 0.005 0.0499

DQ1 0.0822 9.626 0.0500 0.0571 8.395 0.0500

BFDQ1 0.0073 1.054×10−4 0.0500 0.0008 9.610×10−6 0.0500

DQ4 0.1057 17.103 0.0500 0.0996 15.568 0.0500

BFDQ4 0.0055 7.585×10−7 0.0500 0.0004 3.473×10−9 0.0500

BFLDQ1 0.0337 0.2060 0.0500 0.2183 1.343×106 0.0500

BFLDQ4 0.0001 1.099×10−7 0.0500 0.0056 6.986×10−7 0.0500

VQR 0.0387 5.1088 0.0500 0.0508 6.062 0.0500

BFVQ 0.4561 5.211×1010 0.0500 0.3288 3.294×109 0.0500

The correct, nominal thresholds are UC, IND 3.84; CC, VQ 5.99; DQ1 7.81; DQ4

12.59
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the methods at α = 0.01. At n = 250 one method stands out with power: BFVQ; however

we know from Table 4 that it is well over-sized. When using the thresholds in Table 4 to

calculate size-adjusted power the single stand-out method is clearly BFDQ1 with 45%;

the logistic regression based BFLDQ4 is next best with 34%, followed by DQ1 with 31%,

then BFLDQ1, DQ4, BFDQ4 and BFVQ methods ( ∼ 26%). To examine power in more

detail, consider Figure 1(b), showing two times the logarithm of the BFDQ1 and DQ1

statistics, plot against the number of violations from the incorrect HS 1% VaR estimator.

As is logical, with an expected number of only 2.5 violations under the null, both methods

always reject the HS estimator only for very high numbers of violations (13 and above;

e.g. Bp11 always rejects above 5). The out-performance of BFDQ1 is again due to a much

higher rate of model rejection for low violation numbers, here 1-4, as shown in Figure 2(b)

(comparing BFDQ1 and DQ1 in terms of rejection rates against number of violations), all

of which occur highly frequently at n = 250 and 1% HS forecasting. The DQ1 has higher

power than BFDQ1 at 5-12 violations, but these are far less likely to occur in this case.

However, the situation is very different for n > 250 here. For n = 500 and n = 1000,

the stand-out method with highest size-adjusted power in each case is the BFLDQ4 (50%

and 68% respectively). In each case the DQ4 (43%, 60%) and DQ1, BFVQ methods (36%,

57%) are next best. In this case, the BFDQ1 and BFDQ4 statistics still out-performed

the DQ1 and DQ4 respectively, only when e.g. 1-4 violations were observed for n = 500,

but these are not very likely outcomes when n = 500 at 1% forecasting, and the out-

performance of the DQ statistics for the more frequently occurring violation numbers

of 5-12 was enough for both DQ statistics to overall clearly out-perform both BFDQ

statistics here. The out-performance of BFLDQ4, compared to DQ and BFDQ methods

at n = 500, 1000 is fairly uniform across the observed violation numbers, as illustrated

by Figure 3(b), comparing DQ1, BFDQ1 and BFLDQ tests in terms of rejection rates

against number of violations. Similar results occurred for n = 2500, in each case the DQ

statistics clearly out-performed their BFDQ counterparts, but both were out-performed

by BFLDQ4. However, at n = 2500 the BFVQ test recorded clearly the highest size-

adjusted power with 95%, followed by BFLDQ4 (93%), DQ1, DQ4 with ∼ 91% and

BFDQ1, BFDQ4 with ∼ 80, 84%.

Overall, for 1% quantile forecasting, the results are mixed, though always favour
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Table 6: Power and size-adjusted power for nominal 5% tests of 1-step-ahead quantile

forecasts at α = 0.01.

n=250 n=500 n=1000 n=2500

Method Power Size-adj. Power Size-adj. Power Size-adj. Power Size-adj.

UC 0.150 0.082 0.135 0.070 0.143 0.143 0.296 0.296

BFUC 0.042 0.155 0.016 0.129 0.015 0.143 0.020 0.296

Bp11 0.150 0.150 0.125 0.125 0.139 0.139 0.385 0.385

Bp55 0.221 0.150 0.131 0.125 0.139 0.139 0.301 0.385

IND 0.066 0.184 0.084 0.257 0.140 0.206 0.256 0.456

BFIND 0.112 0.112 0.157 0.193 0.150 0.205 0.233 0.426

CC 0.075 0.161 0.093 0.139 0.186 0.220 0.385 0.489

BFCC 0.028 0.184 0.029 0.206 0.036 0.243 0.068 0.537

DQ1 0.358 0.330 0.466 0.359 0.667 0.570 0.932 0.916

BFDQ1 0.060 0.457 0.054 0.161 0.057 0.369 0.107 0.841

DQ4 0.410 0.301 0.630 0.428 0.755 0.604 0.952 0.913

BFDQ4 0.070 0.276 0.075 0.259 0.070 0.351 0.113 0.802

BFLDQ1 0.025 0.278 0.066 0.328 0.274 0.352 0.825 0.475

BFLDQ4 0.001 0.342 0.005 0.498 0.031 0.679 0.451 0.933

VQR 0.097 0.073 0.064 0.075 0.149 0.172 0.571 0.568

BFVQ 0.805 0.261 0.893 0.346 0.950 0.575 0.994 0.946

The correct, nominal thresholds are UC, IND 3.84; CC, VQ 5.99; DQ1 7.81; DQ4

12.59
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Figure 3: Rates of rejection for the DQ1 (cross), BFDQ1 (diamond), BFLDQ1 (circle)

and BFLDQ4 (triangle) statistics, against number of violations under the HS quantile

estimator at n = 1000; (a) 5% HS; (b) 1% HS.
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a Bayesian method. For n = 250, the BFDQ1 method is clearly favoured. At n =

500, 1000 however the BFLDQ4 method is highly favoured. Finally, at n = 2500, the

BFVQ method is marginally favoured regarding size-adjusted power, closely followed by

BFLDQ4. Further, the BFVQ method always had higher size-adjusted power than the

VQR test, as discussed next.

5 Discussion

When detecting the incorrect HS estimator of 1% and 5% quantiles using a range

of competing tests/methods, fairly similar stories can be told at each quantile level, but

with some important differences. First, the DQ and BFDQ methods were almost always

prevalent at or near the top of the methods regarding size-adjusted power (except BFDQ1

at n = 500 ranking 7th). For the BFLDQ methods, this statement only holds for 1% fore-

casting; these methods were usually the worst for size-adjusted power at 5% forecasting.

On the contrary, the UC, BFUC, IND, BFIND, CC, BFCC, BFLDQ1 and VQR methods

almost always performed towards the bottom on this aspect (except VQR at n = 2500

ranking 6th for both α = 0.01, 0.05). The relatively lower (size-adjusted) powers observed

for the UC, BFUC, IND, BFIND, CC and BFCC methods are not surprising: it is well

known that DQ and VQR (and hence BFDQ) methods use more information and out-

perform the frequentist versions of these tests, see e.g. Berkowitz et al. (2011). The very

low power observed for the UC, BFUC, Bp11 and Bp55 tests for 5% VaR forecasting also

make sense since, even in small samples, the 5% HS VaR estimator will give typically give

close to the correct, nominal violation rate; in fact we observed a fixed ratio of average

number of violations from the HS estimator, compared to that expected under the null,

of 1.065 (i.e. only 6.5% more violations on average under the HS estimator), that was

consistent across n. This ratio increased to 1.34 for the 1% HS VaR estimator, again

consistent across n. The IND, BFIND, CC and BFCC tests easily out-performed the

UC test on size-adjusted power, for both 5% and 1% VaR forecasting, because the HS

estimator tends to generate highly correlated violations (it employs heavily overlapping

data periods to generate successive VaR estimates) that are nevertheless close to correct

on average (typically only 6% higher in violation rate at 5% VaR and 34% higher at 1%
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VaR). However, for 1% VaR forecasting the UC, BFUC tests were more powerful than at

5% VaR forecasting, because of the higher discrepancy in average violation rate ratios:

34% more violations is easier to detect than 6% more, on average. In addition, the ra-

tio of the range of the numbers of violations under the 5% HS estimator, compared to

that under the true VaR series, decreases with n, being 1.14 for n = 250 but only 0.64

for n = 2500; this is partly because the HS estimator “follows” the data pattern, in a

non-parametric manner, and so comparatively extreme numbers of violations are highly

unlikely to occur, and become less likely as n increases: thus as the UC, BFUC, Bp11

and Bp55 tests can only reject for extreme numbers of violations, they have lower power

as n increases for 5% VaR forecasting, compared to that for 1% forecasting.

The reported performance of the VQR test in terms of size-adjusted power is slightly

worse than the results in Gaglianone et al. (2011), though nearly comparable. However,

the performance of the DQ methods here is much better than that in Gaglianone et al.

(2011): we speculate that is because we included the V aRt+1 forecast in the design matrix

for the DQ tests, whilst Gaglianone et al. (2011) only included lagged “hits” (and only 1

lag).

The relatively poor performance of the VQR, compared to the BFVQ, test bears

more examination. Figure 4 shows two times the logarithm of the BFVQ (upper) and VQ

(lower) test statistics, plot against the number of violations, under the null hypothesis

(black circles) and also under the HS quantile estimator (grey diamonds), at n = 1000.

Also shown are two times the logarithm of the empirical 5% points of the BFVQ (up-

per) and VQR (lower) statistics; points above these lines represent rejections of the null

hypothesis. It is immediately apparent that slightly more violations tend to occur under

the HS estimator than under the null, the latter having a distribution shifted to the right

compared to the former (the ratio of means is 1.34 as mentioned previously). Further,

the BFVQ statistic has a clearly distinguished distribution of values, typically higher,

under the HS estimator (grey diamonds) compared to that under the null; this leads to

the observed 57.5% size-adjusted power of the BFVQ method. On the contrary, the VQR

test statistic does not have a clearly distinguished distribution of values under the HS

estimator compared to that the null, leading to its very low size adjusted power (17.4%).

Similar illustrations, not shown, occur at n = 250, 500, 2500.
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Figure 4: Two times the logarithm of the (a) BFVQ and (b) VQ test statistics, plot

against the number of violations, under the null hypothesis (black circles) and the HS

quantile estimator (grey triangles) at n = 1000. The horizontal lines are two times the

logarithm of the empirical 5% points of the BFVQ (a) and VQR (b) statistics.
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When comparing the Bayesian version of each test with its frequentist counterpart

(e.g. BFDQ1 vs DQ1, etc), at the 5% quantile level the results are very clear: at each

sample size the Bayesian version of each test had higher size-adjusted power, often only

marginally but sometimes much, much higher, than its frequentist competitor, for all the

tests considered (except VQR, BFVQ at n = 1000). This is a very strong and clear result

in favour of the Bayesian method at the 5% quantile level.

For 1% quantile forecasting, the results are not so consistent: the UC and BFUC have

virtually identical size-adjusted powers over n; though Bp11 and Bp55 are marginally

higher in each case. The IND and CC tests had lower size-adjusted power than the

BFIND and BFCC at all sample sizes; the VQR had much lower size-adjusted power than

the BFVQ for all n; but the DQ1 had higher size-adjusted power than the BFDQ1 for

n > 250, but lower for n = 250. Finally the DQ4 had higher size-adjusted power than the

BFDQ4 for all sample sizes. As noted, the results for 1% quantile forecasting are mixed.

6 Empirical study

We briefly report the results of a large empirical study here. Seven daily financial time

series: prices, exchange rates or financial indices, are considered, in each case converting

these to daily percentage log returns. The seven series are: the US S&P500 index, the

AORD, FTSE100 and Hang Seng indices, the AU US exchange rates, the EU US exchange

rates and IBM asset prices. The initial sample period is specifically from January 2, 1998

to December 15, 2005, approximately 2000 days in each case. The forecast period is

December 16, 2005 to January 15, 2010, covering close to 1000 trading days in each

market, and including the well-known global financial crisis (GFC) period.

One-step-ahead forecasts of VaR at 5% and 1% quantile levels are estimated under a

range of competing models and methods, for each day in the forecast period. Forecasts for

each of four types of heteroskedastic model: the GARCH of Bollerslev (1986), the GJR-

GARCH of Glosten et al (1993) the Threshold (T-)GARCH in Chen and So (2006) and a

smooth transition (ST-)GARCH as in Gerlach and Chen (2008) are estimated employing

the MCMC methods of Chen et al. (2012b). Each of these specifications is estimated

under five types of error distribution: Gaussian, Student-t, the skewed Student-t of Hansen

27



Figure 5: Boxplots of rejection counts for each 1% VaR model across the seven asset

series. Each boxplot represents 11 counts of rejections, out of 7 series.

(1994), the Asymmetric Laplace (AL) of Chen et al (2012c) and the Two-sided Weibull

(TW) of Chen and Gerlach (2013). This gives 20 models generating VaR forecasts at

5% and 1% quantile levels for 1000 days. Also considered are the non-parametric 50 day

and 250 day sample percentile HS methods, thus giving a total of 22 models or methods.

Estimation results are not shown to save space, since only the test results are directly

relevant to this paper; it is expected that most models and methods will be rejected

since the data includes the GFC period, where that outcome is common; but models and

methods that can better captured highly changing volatility and fat-tailed returns will be

rejected the least, across the seven series.

Tables 7 and 8 show the number of series, out of 7, that each model or method of VaR

estimation was rejected in, using the UC, BFUC, Bp11, DQ1, BFDQ1, BFLDQ1, DQ4,

BFDQ4, BFLDQ4, VQR and BFVQ tests for 5% and 1% VaR forecasting, respectively.

The tests were conducted at the 5% level using the empirical cut-offs in Tables 1-5 above.

Results shaded red indicate the most rejections for each model, boxes indicate the fewest

rejections.

Alternatively, the results from these tables can be evaluated based on the model/method

classifications which are illustrated in Figures 5 and 6. The figures illustrate that models
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Table 7: Number of rejections for each model across 7 series for 5% VaR forecasting.

Method UC BFUC Bp11 DQ1 BFDQ1 BFLDQ1 DQ4 BFDQ4 BFLDQ4 VQ BFVQ

G-n 0 0 2 0 0 5 3 2 5 0 0

GJR-n 3 3 5 2 0 4 3 2 4 1 2

TG-n 3 3 4 3 1 6 3 1 6 2 2

ST-n 4 4 4 3 1 6 3 2 5 1 2

G-t 1 1 3 1 1 2 4 4 3 2 2

GJR-t 1 1 3 1 1 2 2 2 2 1 1

TG-t 2 2 3 1 1 3 2 2 2 2 1

ST-t 2 2 3 1 1 4 2 2 2 3 1

G-SKT 0 0 1 0 0 5 3 1 6 0 0

GJR-SKT 2 2 3 1 0 5 2 1 3 1 0

TG-SKT 2 2 3 2 0 6 1 0 5 2 1

ST-SKT 1 1 3 1 0 6 2 0 5 1 1

G-AL 0 0 2 0 0 3 2 2 2 1 0

GJR-AL 1 1 3 1 1 2 3 2 1 1 1

TG-AL 1 1 2 0 1 2 2 1 2 1 1

ST-AL 1 1 1 0 0 4 2 3 3 1 0

G-TW 0 0 1 0 0 4 3 2 5 0 0

GJR-TW 1 1 2 0 0 4 1 2 3 0 0

TG-TW 0 0 2 0 0 6 1 0 5 0 0

ST-TW 1 1 3 1 0 6 3 0 4 1 0

HS250 7 7 7 0 7 1 6 7 0 0 7

HS50 7 7 7 1 7 6 5 7 0 7 7
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Figure 6: Boxplots of rejection counts for each 5% VaR model across the seven asset

series. Each boxplot represents 11 counts of rejections, out of 7 series.

with Gaussian errors and HS methods are rejected the most, at both 5% and 1% VaR

forecasting, and in all or most series. For 5% VaR forecasting, Student-t and Skewed-t

error models have fewer rejections (improving on Gaussian errors), whilst models with

AL and TW errors are generally rejected the least (except by the BFLDQ1 test) and are

hence the most accurate 5% VaR forecasters in this set of models for this forecast time

period. For 1% VaR forecasting, again Student-t and skewed-t error models have fewer

rejections (improving on Gaussian errors), but here skewed-t seems preferable. Models

with skewed-t or TW errors are generally rejected the least by all tests, and are hence the

most accurate 1% VaR forecasters in this set of models for this forecast time period.

Comparing Bayesian and frequentist method results: the frequentist and Bayesian

analogue pairs of tests mostly reject each model approximately the same number of times

over the seven series at each quantile level. The UC and BFUC tests agree almost per-

fectly, though Bp11 mostly has 1-2 more rejections for each model, reflecting its slightly

higher power. At 5% forecasting, the VQ and BFVQ mostly agree, except on model

HS250 where the BFUC rejects it in all seven markets and the VQR never rejects it.

However, both DQ tests tend to reject each model 1 or 2 more times than their BFDQ

counterpart, except again for HS250 and HS50, where the BFDQ test reject more times
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than their corresponding DQ test. Overall, however, both the BFLDQ1 and BFLDQ4

tests have mostly rejected the highest number for each model; again an exception is the

HS250 and HS50 models. Similar comments apply to the 1% VaR test results in Table

8. Here again the BFLDQ methods generally reject the most for each model, though the

DQ methods are also quite comparatively powerful in this respect.

7 Conclusion

Bayesian methods for assessing and testing forecast accuracy for dynamic quantile

forecasts are developed. In a simulation study, at both α = 0.01, 0.05 quantile levels,

the corresponding Bayesian method in most cases had higher size-adjusted power than its

competing frequentist analogue. Results for 5% VaR forecasting favoured the BF dynamic

quantile (BFDQ) methods, while results for 1% VaR forecasting were more mixed, with

the BFDQ1 favoured at n = 250, BFLDQ4 favoured for n = 500, 1000 and the BFVQ

favoured at the largest sample size. The proposed BFVQ method was close to uniformly

more powerful than the VQR test. These results suggest that Bayesian methods have

much to offer for quantile forecast assessment and testing, compared to existing frequentist

tests.
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Table 8: Number of rejections for each model across 7 series for 1% VaR forecasting.

Model UC BFUC Bp11 DQ1 BFDQ1 BFLDQ1 DQ4 BFDQ4 BFLDQ4 VQ BFVQ

G-n 5 5 5 5 0 6 5 1 5 2 4

GJR-n 5 5 5 4 0 6 5 0 5 4 5

TG-n 5 5 5 6 1 6 5 0 5 3 5

ST-n 6 6 5 6 1 6 6 0 6 4 6

G-t 1 2 2 1 1 1 3 3 2 1 1

GJR-t 0 1 1 0 0 0 0 1 0 1 1

TG-t 3 3 3 0 1 0 0 1 1 1 2

ST-t 2 2 2 2 1 1 1 1 1 2 2

G-SKT 0 1 1 1 0 1 1 0 1 0 1

GJR-SKT 0 1 1 1 0 1 0 0 0 1 1

TG-SKT 2 2 2 1 0 1 0 1 1 0 2

ST-SKT 1 1 2 1 0 1 0 0 1 0 2

G-AL 1 1 2 1 2 0 2 4 2 3 3

GJR-AL 3 3 4 1 2 1 0 1 2 4 7

TG-AL 2 2 3 1 3 1 1 2 2 4 5

ST-AL 2 2 3 1 2 1 1 2 2 2 4

G-TW 0 0 2 1 0 1 0 0 1 1 1

GJR-TW 1 1 2 0 1 0 0 1 1 1 2

TG-TW 1 1 2 1 0 1 1 2 1 1 1

ST-TW 0 0 2 1 0 1 3 2 1 0 1

HS250 7 7 7 0 3 6 7 6 7 2 7

HS50 7 7 7 0 7 1 7 3 7 7 7
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