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Post the Global Financial Crisis
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ABSTRACT

Value-at-Risk (VaR) forecasting via a computational Bayesian framework is considered. A
range of parametric models are compared, including standard, threshold nonlinear and Markov
switching GARCH specifications, plus standard and nonlinear stochastic volatility models, most
considering four error probability distributions: Gaussian, Student-t, skewed-t and generalized
error distribution. Adaptive Markov chain Monte Carlo methods are employed in estimation
and forecasting. A portfolio of four Asia-Pacific stock markets is considered. Two forecasting
periods are evaluated in light of the recent global financial crisis. Results reveal that: (i) GARCH
models out-performed stochastic volatility models in almost all cases; (ii) asymmetric volatility
models were clearly favoured pre-crisis; while at the 1% level during and post-crisis, for a 1 day
horizon, models with skewed-t errors ranked best, while IGARCH models were favoured at the
5% level; (iii) all models forecasted VaR less accurately and anti-conservatively post-crisis.

KEY WORDS: EGARCH model; generalized error distribution; Markov chain Monte Carlo method;
Value-at-Risk; Skewed Student-t; market risk charge; global financial crisis.

INTRODUCTION

Financial risk management has undergone much change and greater regulation in the last twenty
years following, and in many ways in response to, the major stock-market crash (“Black Monday”)
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of October, 1987. Now, another major market incident, the global financial crisis (GFC) in 2008-09,
has prompted calls for more and different financial regulation. In order to better control the risk
of financial institutions and to protect them against large unexpected losses, the group of G-10
countries agreed in 1988 to sponsor and subsequently form the original Basel Capital Accord. In
the last two decades, however, large unexpected losses have continued to occur with regularity: e.g.
in December 1994, Orange County (US) announced a loss of $1.6 billion in its’ investment portfolio;
in 1995, Nick Leeson, of Barings Bank (UK), lost $1.4 billion in speculation, primarily on futures
contracts; in 1997, the Asian financial crisis began, which started in Thailand with the financial
collapse of the Thai baht; among others, and finally the very recent GFC. Financial markets and
the products traded on them are continuing to become more complicated and difficult to properly
understand and assess by existing risk management tools and regulations. Such methods and rules
clearly need to evolve as well.

Value-at-Risk (VaR) was pioneered in 1993, as a part of the “Weatherstone 4:15pm” daily
risk assessment report, in the RiskMetrics model at J.P. Morgan. By 1996, amendments to the
Basel Accord (Basel Accord II) allowed banks to use an ‘appropriate model’ to calculate their
VaR thresholds. Jorion (1997) defines VaR as a measure of the highest expected loss, over a
given time interval, under normal market conditions, at a given confidence level: VaR is thus a
conditional quantile of the asset return loss distribution. Following Basel II, VaR has become
more popular and is widely used in practice for risk management and capital allocation. The
recommended back-testing guideline proposed by the Basel Committee on Banking Supervision
(1996) is to evaluate a one percent (1%) VaR model over a 12 month test period (250 trading
days). VaR has been criticised for not measuring the magnitude of a loss in case of an extreme
event. As such, and following McAleer and da Veiga (2008), we also consider various criteria
measuring the loss magnitude given a violation, such as mean and maximum absolute deviation.
These measures go beyond assessing violation rates and allow risk management to incorporate loss
magnitude. Further, the different measures of model performance allow financial institutions to
select different combinations of alternative risk models to forecast VaR using selection or combining
strategies to suit their purpose.

The GFC came to the forefront of the business world and global media in September 2008,
with the failure and merging of several American financial companies, e.g. the federal takeover of
Fannie Mae and Freddie Mac, Lehman Brothers filing for bankruptcy after being denied support
by the Federal Reserve Bank. However, the ”credit-crunch” became apparent in January, 2008 and
it has been suggested the whole GFC was pre-empted by house prices falling in June, 2007. In late
2008, a number of indicators suggested that the major stock indexes were in a downward spiral
globally. Consequently, how to forecast market risk, via VaR, during such extreme periods, becomes
a crucial issue in risk management and investment. To shed light on this issue, this study examines
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a sample of four major Asia-Pacific Economic Cooperation (APEC) stock markets, being the daily
stock indices: Nikkei 225 Index (Japan), HANG SENG Index (Hong Kong), the Korea Composite
(KOSPI) Index; and the US S&P 500 Index. To test a range of competing models in varying market
conditions, the forecast period was split up into two segments: the first finishes at 29 February
2008, well before the effects of the GFC on world markets were clear. The second validation sample
starts in August 2008 and includes the worst of the GFC period and some ”post-crisis” period as
well.

There are many approaches to forecasting VaR: these include non-parametric methods, e.g.
historical simulation (using past or in-sample quantiles); semi-parametric approaches, e.g. extreme
value theory and the dynamic quantile regression CAViaR model (Engle and Manganelli, 2004); and
parametric statistical approaches that fully specify model dynamics and distributional assumptions
e.g. RiskMetricsTM (J.P. Morgan, 1996) and GARCH models (see Engle, 1982 and Bollerslev,
1986). The aim of this paper is to compare a range of well-known, modern and fully parametric
econometric models to forecast VaR, under a Bayesian framework, before, during and after the GFC.
Each model includes a specification for the volatility dynamics and most consider four specifications
for the conditional asset return distribution: Gaussian, Student-t, generalized error distributions
(GED) and the skewed Student-t of Hansen (1994). When forecasting VaR thresholds, our goal is to
find the optimal combination of volatility dynamics and error distribution in terms of the observed
violation rates and the magnitude of the deviation of violating returns, both pre and during/after
the GFC.

The focus here is on parametric models and Monte Carlo simulation. However, many of the
models are flexible, with quite pliable error distributions and differing specifications for volatil-
ity dynamics, that can capture the main empirical or stylized facts observed for financial asset
return data: fat tails (lepto-kurtosis), volatility clustering and asymmetric volatility (Poon and
Granger, 2003). We consider popular variants and extensions of the GARCH model family as
follows: RiskMetrics; symmetric GARCH; integrated GARCH (IGARCH), Engle and Bollerslev
(1986); asymmetric GJR-GARCH, Glosten, Jaganathan, and Runkle (1993); asymmetric exponen-
tial GARCH (EGARCH), Nelson (1991); threshold nonlinear GARCH (TGARCH), Zakoian (1994)
and the Markov switching GARCH, Chen, So and Lin (2009). Further, we consider two stochastic
volatility (SV) models: the symmetric SV and the threshold nonlinear SV model of Chen, Liu and
So (2008).

Bayesian Markov chain Monte Carlo (MCMC) methods have a number of advantages in es-
timation, inference and forecasting, including: (i) accounting for parameter uncertainty in both
probabilistic and point forecasting; (ii) exact inference for finite samples; (iii) efficient and flexible
handling of complex models and non-standard parameters, e.g. threshold and degrees of freedom
parameters, which can be validly infinite; (iv) efficient and valid inference under parameter con-
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straints. As such MCMC methods were generally used to forecast VaR thresholds for each model
in this paper. We follow Chen and So (2006) and design an efficient, adaptive MCMC sampling
scheme for estimation and quantile forecasting.

Section 2 reviews the list of heteroscedastic models considered, whose details are given in
an Appendix, and details the Bayesian MCMC methods used for estimation and forecasting. The
amendment to the Basel Accord was designed to reward institutions with superior risk management
systems and suggested back-testing procedures, whereby actual (past) returns were compared with
forecasts of VaR, be used to assess the quality of ‘internal’ models; we favour this approach.
Seven different criteria are used to compare the forecasting performance of the various conditional
volatility models considered in Section 4, namely: (1) violation rates; (2) mean market risk charge
(MRC); (3) maximum absolute deviation (AD) of violations; (4) mean AD; (5)observed penalty
factor; (6) the conditional coverage test; and (7) the unconditional coverage test. The last two
criteria are the standard back-testing procedures. Section 5 presents a simulation study of EGARCH
with three error distributions showing the estimation performance of the methods in Section 3.
Section 6 presents the empirical results and forecasting study. Concluding remarks are given in
Section 7.

MODELS

We investigate general Bayesian VaR forecasting from a list of nine popular parametric volatility
models with specified dynamics and four error distributions. The volatility dynamics for each
model are specified in detail in Appendix A. Each model has the general mean equation and error
specification:

rt = at, at =
√
htεt, εt ∼ D(0, 1),

where rt is the return observation at time t; εt is a sequence of i.i.d. random variables, with
mean zero (0), variance one (1) and distribution D; and ht is the conditional variance of rt. Each
model has a dynamic specification for ht, as in Appendix A. The common names for the models
are: GARCH, IGARCH, RiskMetrics, GJR-GARCH, EGARCH, Threshold GARCH (TGARCH),
Markov switching GARCH, stochastic volatility (SV) and threshold SV.

Four error distributions are used for the i.i.d. disturbances in each GARCH-type model εt.
The choice D(0, 1) ≡ N(0, 1) is standard, and labeled as (a). The Student-t (b), GED (c), and
skewed Student-t (d) distributions need to be standardized to have unit variance, as specified in
Appendix A.
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BAYESIAN APPROACH

Bayesian methods usually require the specification of a likelihood function and a prior distribution
on model parameters. This section presents the general likelihood functional form for all models
considered in the paper and then presents specific details for two of the nonlinear models, together
with details of the prior distributions employed under GED and skewed Student-t errors. We give
details in the case of the EGARCH model with GED errors and GJR with skewed Student-t errors.
Details of the likelihoods for the other models can either be deduced from the model forms above,
or found in the papers referenced above.

Let Θ denote the full parameter vector for any of the combinations of model and error distri-
bution considered. The conditional likelihood can be written as:

L(r|Θ) =
n∏
t=1

1√
ht
pε

(
rt√
ht

)
, (1)

where ht is given by the relevant volatility equation and pε (·) is the relevant error density function
for εt.

Exponential GARCH model and prior
Let Θ denote the vector (α1, α2, γ, β, λ). The conditional likelihood for the EGARCH-GED error
model is thus:

L(r|Θ) =

[
λ

2σΓ( 1
λ)

]n n∏
t=1

1√
ht

exp

{
−

n∑
t=1

∣∣∣∣ rt√
htσ

∣∣∣∣λ
}
, (2)

where r = (r1, . . . , rn) and σ = [Γ( 1
λ)/Γ( 3

λ)]0.5.

The prior distribution is chosen to be reasonably uninformative so that the likelihood dominates
inference. The prior for α=(α1, α2, γ) is chosen as a Gaussian: α ∼ N(0,V ), with the diagonal
variance-covariance matrix (V ) chosen to have ‘large’ diagonal elements; e.g. 1. This prior makes
sense since these parameters are unrestricted, but empirical studies show they are usually estimated
to be close to, though still significantly different from, 0. This prior is reasonably diffuse in the
region close to 0, and well beyond, where empirical parameter estimates usually lie.

The parameter β is restricted for stationarity, via |β1| < 1. The prior for this parameter
is chosen to be uniform over this region. For the shape parameter λ, Vrontos, Dellaportas, and
Politis (2000) set a log-normal prior with mean 1.04 · 1022 and variance 2.93 · 1087. Such a choice
seems excessively diffuse. Instead we employed a half-normal distribution, λ ∼ Nc(0, 1), which is a
standard normal truncated to lie on the positive real line, i.e. λ ∈ (0,∞).

5



The prior for (α, β, λ) is assumed independent in the three groupings, so that:

p(α, β, λ) ∝ exp{−1
2

(α)TV −1(α)− 1
2
λ2} · I(β ∈ (−1, 1)). (3)

GJR-GARCH model and prior
The GJR-GARCH model specification is given in (16), here considered with a skewed Student-t
error distribution. The likelihood for the GJR-GARCH-st model is thus:

L (r|α, ν, η) =

n∏
t=1

bc√
ht


[1 + 1

ht(ν−2)

(
brt+a

√
ht

1−η

)2
]−(ν+1)

2
I1,rt +

[
1 + 1

ht(ν−2)

(
brt+a

√
ht

1+η

)2
]−(ν+1)

2
I2,rt




where α = (α,0α1, β1, γ1)′; I1,rt = I
(
rt <

−a
√
ht

b

)
, and I2rt = 1− I1rt .

Again priors are set that are mostly uninformative over the restricted parameter region in (17).
That is, the prior for α is flat over (17); while for the degrees of freedom, we re-parameterize via
τ = ν−1 and set the prior for τ as U(0, 0.25). This ensures that ν > 4 and that the first four
moments of the error distribution are finite. Finally, we set a flat prior over η ∈ (−1, 1).

These settings for the EGARCH and GJR-GARCH models are indicative of the prior settings
used for the other models. Further details for the other models may be found in Chen and So
(2006). The joint posterior distribution for each model is formed by multiplying the likelihood by
the joint prior for that model. The posteriors for each model are not in the form of a standard
or known distribution in the parameters. As such we turn to computational MCMC methods to
obtain estimation and inference from each posterior.

MCMC methods
MCMC methods have proven successful for nonlinear time series in general, e.g. see Chen and Lee
(1995); Vrontos, Dellaportas, and Politis (2000); Chen and So (2006) and others. MCMC methods
simulate iteratively from the conditional posteriors of groups of model parameters. We discuss
general details here, as well as some specific details for the EGARCH model and for the GED and
skewed Student-t distributions. This is the first time a skewed Student-t error GARCH-type model
has been estimated by MCMC methods in the literature, to the best of our knowledge.

The typical parameter groupings are: α, plus any thresholds or parameters in the error dis-
tribution. For the EGARCH-GED model, parameter groupings are: (i) (α, β) and (ii) λ. For the
TGARCH model with skewed Student-t errors, parameter groupings would be: α, w, d, ν, η. The
posterior for each parameter group, conditional upon the other parameters, is formed separately by
multiplying the likelihood (1) by the prior for that parameter group. None of these conditional pos-
terior distributions are in a standard form to facilitate direct simulation from, for all models here,
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as such we turn to Metropolis-Hastings type methods; see Metropolis et al. (1953) and Hastings
(1970).

To speed convergence and to allow optimal mixing properties, we employ an adaptive MCMC
algorithm that combines a random walk Metropolis (RW-M) and an independent kernel (IK-)MH
algorithm, following Chen and So (2006). For the burn-in period, a Gaussian proposal distribution
is employed in a RW-M algorithm. The variance-covariance matrix of this proposal is subsequently
tuned to achieve optimal acceptance rates, as in Gelman et al. (1996). After the burn-in period,
the sample mean vector and sample variance-covariance matrix of the iterates are formed. These
are employed in the sampling period as the proposal mean and proposal variance-covariance matrix
for a Gaussian proposal in an IK-MH algorithm. Such an adaptive proposal updating procedure
will be highly efficient, as long as the burn-in period has ‘covered’ the posterior distribution. See
Chen and So (2006) for more details. We extensively examine trace plots and autocorrelation
function (ACF) plots from multiple runs of the MCMC sampler, for each model parameter and
from different starting positions, to confirm convergence and infer adequate coverage. Details for
the sampling scheme for the MS-GARCH model can be found in Chen, So and Lin (2009).

FORECASTING RETURNS, VOLATILITY AND VaR

Forecasting utilizing MCMC methods can efficiently incorporate parameter uncertainty in a straight-
forward fashion. The steps below outline how to generate l-step-ahead l-day return and volatility
forecasts, from the models and error distributions considered, using forecast origin t = n. These
steps are performed at each MCMC iteration in the MCMC sampling period, using the current
iterate (j) for each model’s full parameter set, denoted Θ[j]:

1. Calculate hn+1 using the in-sample data up until time t = n, r, the relevant volatility equation
from (1)-(9) and Θ[j]. Set i = 1.

2. Simulation step: draw εn+i ∼ D(0, 1) where D is one of the four standardized error distribu-
tions. Calculate rn+i = an+i =

√
hn+iεn+i.

3. Evaluation step: evaluate hn+i+1 using hn+i, the simulated an+i from 2., the in-sample data
r, the relevant volatility equation from (1)-(9) and Θ[j].

4. Set i = i+ 1 and go to 2.
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The process is continued up to the simulation of εn+l and calculation of rn+l. These steps gen-
erate one realization from the joint distribution of rn+1, . . . , rn+l|r,Θ[j]. Repeating this process for
j = 1, . . . , J while also simulating Θ[j] from the relevant model’s posterior distribution, numerically
integrates out Θ and obtains a Monte Carlo sample from the forecast distribution rn+1, . . . , rn+l|r.
Summing each l-day vector of returns, i.e.

∑l
i=1 rn+i gives one sample from the l-day forecast

return distribution, conditional upon r, as required.

The main purpose of this paper is to forecast VaR thresholds. VaR at level α can be defined
as:

Pr (∆V (l) ≤ −VaR) = α, (4)

where ∆V (l) is the change in the asset value over l time periods. As standard, we consider
α = 0.05, 0.01.

A one-step-ahead VaR is simply the α-level quantile of the l = 1-step conditional distribution
rn+1|Fn ∼ D(0, hn+1). Here hn+1 is given by one of the models (1)-(7), and D is the relevant error
distribution in (a)-(d). This predictive distribution is estimated via the MCMC simulation using
the steps above: i.e. the MCMC samples give Θ[j], h

[j]
n+1 for iterates j = M + 1, . . . , N , which is

the MCMC sampling period. Then, the quantile VaR is given by:

VaR[j]
n+1 = −

[
D−1
α (Θ[j])

√
h

[j]
n+1

]
, (5)

where D−1 is the inverse CDF for the distribution D. For errors (b), (c) and (d) the CDF depends
on some unknown parameters, which explains the notation. Then, the final forecasted one-step-
ahead VaR is the Monte Carlo posterior mean estimate:

VaRn+1 =
1

N −M

N∑
j=N−M

VaR[j]
n+1, (6)

The l-day VaR is the α-level quantile of the l-day return distribution An(l) =
∑l
i=1 rn+i|Fn.

The steps detailed above simulate a Monte Carlo sample A[j]
n (l) = a

[j]
n+1 + ... + a

[j]
n+l; j = 1, . . . , J

from this forecast distribution. The l-day VaR is:

VaRn(l) = −G−1
α (An(l)|Fn). (7)

where in general the l-day CDF G is not D. As such, we take the empirical or sample quantile
estimate from the Monte Carlo sample A[j]

n (l); j = 1, . . . , J at the required level α to estimate
VaRn(l).

One exception is under the RiskMetricsTM model. Here, the square root of time rule is implied
by the model so that:

VaRn(l) =
√
l ×VaRn+1. (8)
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Table I. Basel Accord Penalty Zones

Zone Number of Violation Plus factor k
Green 0 ∼ 4 0.00
Yellow 5 0.40

6 0.50
7 0.65
8 0.75
9 0.85

Red 10 1.00
The number of violations is calculated on the basis of 250 trading days.

Testing and comparing VaR models
Here details for the criteria employed, to compare and test the competing VaR forecast models
are given, including forecast accuracy, minimum loss and hypothesis testing criteria. These are
measured by observed violation rates, market risk charges (Jorion 2002), absolute deviations given
a violation (see McAleer, 2008) and two standard back-testing criteria.

A simple method to compare VaR forecasts is the violation rate (VRate):

VRate =
Σn+m
t=n I(rt < −VaRt)

m
, (9)

where n is the number of in-sample observations and m is the forecast sample size. Naturally,
VRates close to α are desirable. Further, under the Basel Accord, models that over-estimate risk
(VRate < α) are preferable to those that under-estimate risk levels.

The Basel II Accord of 1996 gives guiding principles to help financial institutions better assess
the violations from VaR models. Table I reproduces Table VII from McAleer and da Veiga (2008),
which categorizes zones based on α = 0.01 and 250 forecast trading days: Green indicates a good
model, Yellow indicates possibly, but less, acceptable models and Red indicates an unacceptable
model.

The Accord recommends the use of ‘market risk charge’ to further assess model performance.
The market risk charge is set at the maximum of the previous day’s VaR and the average VaR over
the last 60 days multiplied by a penalty weight. As in Jorion (2002) the equation is:

MRCt = sup
{

VaRt−1,VaR60 · (3 + k)} , (10)

where V aRt−1 is the previous day’s VaR estimate, (V aR)60 is the 60 day average VaR, and k is
the penalty factor, as shown in Table I, which penalizes anti-conservative market risk projections.
Under the Accord MRC is defined for a horizon of 10 trading days when α = 0.01 and it must
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be based on at least a year of historical in-sample data. Models with lower MRCs are considered
better in terms of risk measurement.

The magnitude of violating returns, not just their VRate, is also important, i.e. the expected
loss given a violation. Thus, measures of loss magnitude are also considered here. The AD of
violating returns, considered by McAleer and da Veiga (2008), is:

ADt = |rt − (−(V aR)t)| , (11)

defined only when rt is a violation. The mean and maximum AD are calculated here to compare
competing VaR models: models with lower mean and/or maximum ADs are preferred.

SOME MONTE CARLO RESULTS

Simulation studies are performed to examine the effectiveness of the MCMC sampling scheme. The
error distributions were chosen as: (i) the GED with parameters λ = 1, 1.5 and λ = 2 and (ii) the
skewed Student-t St(7, η) with η = −0.05,−0.5,−0.99. Specifically, the models we consider are:

Model 1: The true model is an EGARCH-GED model.

rt = at,

at =
√
htεt, εt

i.i.d.∼ GED(0, λ),

ln(ht) = −0.2 + 0.2
|at−1| − 0.26at−1√

ht−1
+ 0.93 ln(ht−1),

where εt follows the standardized GED(0, λ) distribution. The form of Model 2 is the same as
Model 1, but the distribution of εt is set as the skewed Student-t, St(7, η).

For each model we simulated 100 replicated data sets, repeating this over sample sizes of
n=2,000 and 4,000. For each dataset we used a total of 20,000 MCMC iterations, with a burn-in
period of M=8,000 iterations. We choose initial values for the EGARCH parameters as α = 0 and
tail-thickness parameter λ = 0.1 in Model 1, while the degrees of freedom ν was set at 200 and
η was set as 0 in Model 2. These are generally quite poor starting values and our results are not
sensitive to different choices.

Table II about here

Table II shows the estimation results for the simulated datasets, including true parameter
values, means, standard deviations, 2.5 and 97.5 percentiles for the 100 posterior mean estimates,
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over the replicated data sets, at each sample size. All of the means of the estimates are close to
their respective true values, with reasonable standard errors that reduce with increasing sample
size. For the GED errors, λ = 2 causes no problem at all, despite the low prior weight attached to
this value from the half-standard normal prior. For the skewed Student-t error model, η = −0.99
also causes minimal problems, despite being close to the boundary value of η = −0.99, the bias in
estimation being practically negligible.

EMPIRICAL STUDY

For the empirical study, an asset portfolio of four major Asia-Pacific Economic Cooperation (APEC)
stock markets is considered. Four daily stock price indices, including three major Asian markets:
the Nikkei 225 Index (Japan), HANG SENG Index (Hong Kong) and the Korea Composite (KOSPI)
Index; as well as the US S&P 500 Index. The data were obtained from Datastream International
over a 12-year time period, from October 1, 1997 to December 30, 2009.

For each market, the returns are the logarithmic difference of the daily price index, as a
percentage:

rt = (log(Pt)− log(Pt−1))× 100,

where Pt is the closing index value on day t. We consider a single equally weighted portfolio of
these assets, with return:

rp,t =
4∑
i=1

wi × ri,t,

where rp,t is the portfolio return at time t, ri,t is the return of asset i = 1, . . . , 4 at time t and
wi = 0.25 is the weight on each market’s return. This portfolio return series is now analyzed.

To examine the performance of the models under highly varied market conditions, this study
examines two distinct forecasting periods. The first complete data set is divided into two: an
in-sample period of October 1, 1997 to July 8, 2005, and a forecast or validation period, containing
the m = 588 observations: July 9, 2005 to February 29, 2008. This is a period before the effects of
the GFC hit the markets.

To examine how the models perform during the 2008-09 GFC, and evaluate how the crisis
affects risk management, a second time span in considered: a learning period of October 4, 2000
to July 31, 2008, of similar sample size to the pre-crisis learning sample, and a 2nd validation or
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forecast period of 316 trading days: August 1, 2008 to December 30, 2009. This covers the worst
effects of the GFC on markets.

A rolling window approach is used to produce 1 and 10-day forecasts of the 1% VaR and 1-day
forecasts of the 5% VaR thresholds in both forecast samples. The models were: RiskMetricsTM , six
GARCH-type models: IGARCH, GARCH, TGARCH, GJR-GARCH, EGARCH, and MS-GARCH,
respectively, where the GARCH-type models all employed each of the four error distributions; and
two SV models: the symmetric SV and THSV models, specified in equations (22) − (23), with
Gaussian and Student-t distributions only. The threshold value r = 0 and the delay lag d = 1
were used, in accord with general assumptions in the literature. Thus, 29 risk models in total
are considered. The first n return observations, i.e. each in-sample period, were initially used to
estimate each model and then to forecast the returns rn+1, . . . , rn+l, as detailed in Section 5, for
l = 1, 10. The in-sample period was then rolled forward by one observation, so that it ranged
from r2 to rn+1, whereby the returns rn+2, . . . , rn+l+1 are forecasted. This roll-forward process was
repeated until each day in the forecast sample was forecast. To strike a balance between estimation
efficiency and a feasible number of forecasts, a rolling window size of approximately n = 1700
observations was chosen, leaving m = 588 observations to be forecasted in the first sample period,
and m = 316 in the second.

For illustration, time series plots of the one-day-ahead forecasts of ht based on the GJR-
GARCH-t, GJR-GARCH-st, EGARCH-GED, and EGARCH-t models are presented in Figure 1.
This illustrates the similarity among well-specified volatility models, but also highlights that dif-
ferences can occur, especially in periods of high volatility.

Back-testing
Two back-testing criteria (unconditional, UC and conditional coverage, CC) for examining the
accuracy of the models for VaR are employed. The simplest method tests the hypothesis that
the VRate is equal to α. Kupiec (1995) examines whether VaR estimates, on average, provide
correct UC of the lower α percent tails of the forecasted return distributions. Christoffersen (1998)
developed a CC test that simultaneously examines unconditional coverage and independence of
violations: it is a joint test that the true violation rate equals α and that the violations are
independent.

Several criteria are used to compare the forecasting performance of the various conditional
volatility models considered, namely: (1) VRate; (2) mean MRC; (3) maximum AD of violations;
(4) mean AD; (5)observed penalty factor; (6) the CC test; and (7) the UC test.

1 day forecasting results: pre-crisis period
We first discuss the pre-crisis forecast period: July 9, 2005 to February 29, 2008. Table VII shows
p-values for the UC and CC tests for the one-day VaR forecast models at the 99% confidence level
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Figure 1. The one-step-ahead volatility forecasts for portfolio return.

for the pre-crisis period in columns 2 and 3. Only the RiskMetricsTM and THSV-n models, which
fail both tests at the 5% level, can be rejected among the 29 forecast models. As usual, these tests
have revealed that most models cannot be formally rejected as accurate VaR forecasters under quiet
market conditions. However, during the financial crisis period, many of the models can be rejected
when l = 1

Table III presents the first five criteria for each model (for 99% and 95% one-day VaR). In
order to evaluate overall performance, we rank the 29 forecast models for each criteria and each
VaR level in Table III. For each model and given α, the closest VRate ratio to one is ranked 1, the
next closest ratio ranked 2 and so on. These ranks are not given to save space. For α = 1% and
1-day-ahead forecasting, there are ten best models in terms of VRate: the GARCH-GED, GARCH-
st, GJR-GARCH-t, GJR-GARCH-GED, GJR-GARCH-st, EGARCH-GED, MS-t,MS-GED, MS-
st and SV-t models, all with α̂ = 1.02%. The next best two models are the EGARCH-st and
IGARCH-st with α̂ = 0.85%. This is a mix of symmetric, asymmetric and nonlinear volatility
models. However, five of the top 12 ranked models for VRate have skewed Student-t errors, four
have GED and three have Student-t errors: clearly fat tails are required in this dataset. Further
five of these twelve are asymmetric volatility models.
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In terms of mean market risk charge (MRC), 6 of the top 7 ranked models had Gaussian errors.
Since the Gaussian error models all under-estimated risk levels at 1%, it is not surprising they show
the smallest MRC, which depends on the average VaR over 60 days. Under the maximum and mean
ADs the asymmetric models dominate the top rankings, with 6 of the top 9 ranked models, for AD
Max, and 10 of the top 12 for AD Mean. Further, under AD fat-tailed errors occupy the top 8
rankings for AD max and 9 of the top 12 for AD mean.

The overall best models are the GJR-GARCH models: with GED, Student-t, skewed Student-
t and Gaussian errors. The four EGARCH models are next best overall took. Thus asymmetric
volatility models did best here, while among these models, those with fat-tailed errors did best,
especially those with GED and skewed-t errors. The RiskMetricsTM model performed the worst in
two of the five measures, including VRate (with a large 2.72%), had the largest penalty factor and
was overall close to the THSV-n model in performance.

It is clear that volatility asymmetry is highly important at α = 0.01 and l = 1 while the choice
of error distribution was less important prior to the GFC. Further, GARCH-type models mostly
finished well ahead of the SV-type models; only the SV-t was competitive with any GARCH model
here, with the other three SV models ranking close to the bottom across all measures. The results
suggest that, prior to the crisis, at the 1% quantile of the distribution, the asymmetric volatility
effect, is strong and important and capturing this feature allowed better predictability for extreme
returns in this portfolio, far more so than the shape of the (error) distribution and any associated
properties like skewness, kurtosis, etc did.

Table III about here

For α = 5%, the overall best models are the GARCH-st, GJR-GARCH-st model (which ranked
1st for both mean and max AD), the EGARCH-st and the IGARCH-st models, so the first four
overall best models had skewed Student-t errors. The RiskMetricsTM model ranked last for VRate
and close to last overall, the THSV models overall being marginally worse. Clearly, skewed errors
are highly important at α = 0.05 when l = 1 and a GARCH or GJR specification seems best
under that choice. The results suggest that at the 5% quantile of the distribution, the shape of the
(error) distribution, especially whether it is skewed, is very important when l = 1, and capturing
this feature allowed better predictability for the 5th percentile of returns in this portfolio. The
asymmetric volatility effect was also still important, but was secondary in this respect.

Figure 2 exhibits one-day ahead VaR forecasts and realized returns for the best four models
considered, in the forecast sample, at α = 0.01. The four GJR-GARCH models’ VaR forecast
thresholds are violated six to eight times in 588 returns. In summary for one-day ahead VaR
forecasting in this sample, asymmetric models have dominated the overall rankings at α = 0.01,
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while still featuring prominently at α = 0.05; while skewed Student-t errors were only strongly
favoured when α = 0.05. The best combined choice of model was the GJR-GARCH with skewed
Student-t errors. The RiskMetricsTM , symmetric SV with Gaussian errors and both THSV models
tended to be at or near the bottom of the rankings for this sample of data under these measures.

1 day forecasting results: GFC period
We now discuss the results at the 1% risk level for 1-day-ahead forecasting in the period that
contains the GFC: August 1, 2008 to December 30, 2009. Table VII shows p-values for the UC, CC
tests at the 99% confidence level for this period in columns 4 and 5. The RiskMetricsTM , GJR-
GARCH-n, EGARCH-n, EGARCH-t, EGARCH-GED and all four SV-type models are rejected
by both tests at the 5% level. Further, models rejected by UC only include the GJR-GARCH-t,
GJR-GARCH-GED and MS-n. These models are excluded from the discussion to follow.

Results for the other five criteria are shown in Table IV. For models surviving the UC, CC
tests, there are nine best models in terms of VRate: the GARCH-t, GARCH-GED, GARCH-
st, IGARCH-t, IGARCH-GED, IGARCH-st, MS-t, MS-GED and MS-t, all with α̂ = 1.58%, i.e.
risk under-estimated by 58%, with 5 observed violations compared to the expected 3.16; all models
under-estimated risk levels in this GFC dominated period. This is a mix of symmetric and nonlinear
volatility models, with asymmetric volatility and Gaussian error distributions not represented. Six
of the nine models have non-stationary volatility equations, indicating the enormous and quickly
changing effects from the GFC.

In terms of MRC, again MS, GARCH and EGARCH models occupied the top 7 ranks, again
all with fat-tailed errors. Under the maximum AD the rejected EGARCH model takes the first
three rankings, while four of the top 6 ranked models have skewed-t errors; for both max AD and
mean AD IGARCH-st ranks best among surviving models, followed by GJR-st and GARCH-st:
clearly skewed errors are important for ADmax and mean. The overall best models are GARCH-st
model and IGARCH-st. Most of the best overall models have skewed-t errors, while models with
Gaussian errors all did poorly on most criteria. The RiskMetricsTM model ranked worst of all
the GARCH-type models, but ahead of the four SV models that again occupied the bottom, now
including the SV-t.

Clearly, during and following the GFC, a skewed error distribution with fat tails is very im-
portant to capture risk dynamics and level, at 1%, at a one day horizon. Gaussian errors were least
favoured, while nonlinear and symmetric volatility models were favoured over asymmetric ones.

For α = 5%, again all models under-estimated risk, s.t. α̂ > 5%. The overall best models
are the IGARCH-st (top ranked in VRate, with 5.38%), GJR-GARCH-st, IGARCH-GED and
IGARCH-n models. The RiskMetricsTM model did much better here ranking 6th overall and
equal 4th for violation rate. The SV models, however, again performed the worst of all models.
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The results suggest that at the 5% quantile of the return distribution in the GFC period, the
shape of the (error) distribution, and whether asymmetry is included, are not the most important
aspects when l = 1. Instead, non-stationary IGARCH models seem to do best, even including the
RiskMetrics approach.

At both 1, 5% levels during the crisis IGARCH models performed comparably among the best
during and after the GFC. At the 1% level fat tails and skewness were important in the error
distribution; while at 5% the error distribution was not that important.

Table IV about here

10 day forecasting results: pre-crisis
When considering 10-day VaR, it is not appropriate here to conduct either the UC or CC tests since
we considered over-lapping ten-day returns. We would expect these returns to cluster, as would
our VaR forecasts and hence the observed violations. Violations should thus not be independent
when over-lapping returns are used, nor should the iid assumption in the UC test be valid.

The empirical results of the 10-day VaR forecasting (l = 10) for the pre-crisis forecast period
are in Table V. The amendments to Basel II allow banks freedom to use ‘appropriate’ internal
models to measure their exposure to market risks, requiring this to be summarized as a 1% Value-
at-Risk over a 10 day horizon. Thus only α = 1% was considered. Here, the stand-out best
model in terms of VRate was the EGARCH-n, with α̂ = 1.04%, followed by the EGARCH-st with
α̂ = 1.21%. The GJR-GARCH models ranked poorly here with 1.55% (skewed Student-t error)
and 1.73% for the other error distributions, while the RiskMetricsTM was worst with 2.94%. In
terms of mean MRC the TGARCH-t model ranked best, with the GJR models all ranking in the
bottom places. For both maximum and mean ADs, the EGARCH and GJR-GARCH obtained all
the top 8 rankings, with EGARCH best. The overall top ranked models were the four EGARCH
models, with EGARCH-n and EGARCH-st the best two. The RiskMetricsTM model was again the
last ranked model overall and regarding VRate.

In summary for ten-day return VaR forecasting, at α = 0.01, in this pre-crisis sample, asym-
metric models have dominated, with the E-GARCH dominating the high rankings; the EGARCH-n
ranking first or second for 3 forecast risk measures. The RiskMetricsTM model was again at the
bottom of the rankings for this sample of data under these measures.

10 day forecasting results: GFC period
The 10-day VaR forecasting results and rankings for the 2nd forecast sample period are given in
Table VI. Here, all models under-estimate risk levels substantially. The best models in terms of
VRate were the IGARCH-st and the GJR-GARCH-n, each having α̂ ≈ 3, indicating that observed
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(a)

(b)

Figure 2. VaR forecasts for the period before the global financial crisis (a) 1-day-ahead and (b) and
ten-day ahead VaR forecasts at 1% level.
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VRate was 3 times higher than nominal. Oevrall, the IGARCH-st, IGARCH-GED and IGARCH-
n were best overall. In terms of mean MRC the EGARCH models ranked best, followed by the
TGARCH models, with the IGARCH and RM models ranking in the bottom places. For both
maximum and mean ADs, the IGARCH and GARCH obtained most of the top 10 rankings. The
overall best models were the IGARCH-st, IGARCH-GED and IGARCH-n models. The SV-type
and RiskMetricsTM model were the last ranked models overall.

In summary for ten-day return VaR forecasting, at α = 0.01, in this GFC dominated sample,
all the model struggled and substantially under-estimate risk levels. The IGARCH model did
comparatively better, but no model does well at all. The RiskMetricsTM model was again at the
bottom of the rankings for this sample of data under these measures.

Tables V-VI about here

For these two forecast periods, it seems that completely different models have dominated for
l = 1, 10 and during pre-crisis and crisis periods. No overall single model can be recommended in
both quiet and highly volatile market conditions. Instead, the best model depends on the forecast
horizon l and quantile level α and overall market conditions. For one (l = 1) and ten (l = 10)
day VaR forecasting pre-crisis, modeling asymmetry is very important, but in different ways. For
one-day forecasting the GJR-GARCH with skewed Student-t errors did best overall, while the
GJR models as a group occupied the top 4 placings at α = 0.01 and 3 of the top 6 at α = 0.05.
The EGARCH models tended to rank just below the GJR models for l = 1. The choice of error
distribution for l = 1 seemed slightly less important than ensuring that asymmetry was effectively
captured, though skewed Student-t error models dominated at α = 0.05. However, during the GFC
period, asymmetry was far less important; instead employing a skewed error distribution with fat
tails was critical to capturing risk dynamics and level, while non-stationary IGARCH and MS
models did comparatively best, though all models did under-estimate risk levels during this period.

For ten-day VaR forecasting, in the pre-crisis period the EGARCH model with Gaussian errors
did best for α = 0.01, followed by the other three EGARCH models. In this case Gaussian errors
seemed to be quite adequate and to even do better than the fat-tailed distributions; this result might
be influenced by the aggregation of 10 single day returns being closer to normality, as expected
statistically, than a single day’s return distribution. We further note that the simplest and most
parsimonious asymmetric models (i.e. not the TGARCH) dominated at both l = 1 and l = 10
days.

In the GFC forecast period, however, all models significantly under-estimated risk levels at
a 10-day horizon and no model could be recommended as accurate. To better understand this
outcome, the bottom panel of Figure 2 exhibits ten-day ahead VaR forecasts and realized returns
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for the best four models during the pre-crisis period, which are EGARCH with various errors. The
VaR forecasts violate the thresholds six to eight times from 579 forecasts in the pre-crisis period:
the violations are few and spread out without clustering. Figure 3 shows the equivalent results in
the GFC-dominated 2nd forecast period, for the best two models. Now, there is a large number
of clustered violations all occurring in quick succession in October, 2008, at the start of the most
dramatic effects of the GFC on daily returns. The dates for the clustered violations are the 9th,
10th, 14th, 15th, 20th, 21st and 23rd October, 2008. Clearly and logically, the 1-day ahead VaR
forecasts can adjust to the global financial crisis effects and subsequent extreme returns far more
quickly (9 days more quickly in fact) than the 10-day ahead VaR forecasts. This result is clearly
heavily influenced by our use of 10 day periods that overlap by 9 days; the 10 day forecasting results
results may have been better if we analysed non-overlapping 10 day periods.

This study considered a range of well-known, modern and popular, fully parametric econo-
metric models to estimate and forecast VaR under a Bayesian framework. Each model includes a
specification for the volatility dynamics and further, most models consider four specifications for
the asset return error distribution. We observed from the empirical study that a conservative risk
model often yielded a lower violation rate and correspondingly higher mean market risk charge and
that different models were required depending on length of forecast horizon and quantile level, as
well as for different market conditions. Also, while the 1-day forecasts, especially for non-stationary
models, adapted reasonably well to the recent GFC, no model could be recommended for the recent
GFC dominated period for 10-day ahead forecasting. McAleer, Jimenez-Martin, and Pérez-Amaral
(2009) illustrate two useful variations to the standard mechanism for choosing forecasts, namely:
(i) combining different forecast models for each period, such as a daily model that forecasts the
supremum or infinum value for the VaR; (ii) alternatively, select a single model to forecast VaR,
and then modify the daily forecast, depending on the recent history of violations under the Basel
II Accord. Our study can provide valuable information for Deposit-taking Institutions (ADIs) to
help choose risk models for predicting their VaR. Further, ADIs could employ combinations of
prominent models based on our findings as a management strategy for forecasting VaR.

Table VII about here

CONCLUSIONS

This paper assesses the possibility of general Bayesian forecasting for carrying out one to ten
day ahead VaR forecasting across a range of competing parametric heteroskedastic models. Nine
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popular volatility models are compared, most with four separate error distributions. For one and
ten-day VaR forecasting, the well-known RiskMetricsTM model ranked last in most measures and
was rejected in all cases by the diagnostic tests. No model did consistently well across the different
forecast horizons or quantile levels or market conditions. For one day ahead forecasting prior to
the financial crisis, the GJR-GARCH with skewed Student-t errors ranked best, followed by other
asymmetric volatility models. Volatility asymmetry is most important to capture, with skewed
errors also prominent, especially at α = 0.05. During and after the crisis, asymmetry is not
important, instead skewness and fat tails dominate at the 1% level, with non-stationary models
doing best at 5%. For ten-day ahead forecasting prior to the crisis, the EGARCH models had the
best performance, with volatility asymmetry again an important feature, while normality seemed
the best choice of error distribution. In both 1 and 10 day forecasting, all models under-estimated
risk levels during the crisis, in fact all 10-day forecasting models were rejected for risk coverage
during and after the crisis. Further, generally, GARCH models dominated the SV models in forecast
performance. We observed from the empirical study that a conservative risk model often yielded
a lower violation rate and correspondingly higher mean market risk charge. Therefore, we suggest
employing combinations of prominent models as a management strategy for forecasting VaRs. We
will focus on the Bayesian method helping to forecast the VaR under different investment strategies
in the future.
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Appendix A
The nine models considered are now given in detail:

1. Symmetric GARCH
Bollerslev (1986) introduced a parsimonious extension to Engle’s ARCH model:

ht = α0 +
p∑
i=1

αia
2
t−i +

q∑
j=1

βjht−j . (12)

Positivity and stationary dynamics are ensured via the standard restrictions:

α0 > 0; αi ≥ 0, βi ≥ 0 and
p∑
i=1

αi +
q∑
i=1

βi < 1. (13)
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Based on Bollerslev, Chou and Kroner (1992) we set p = q = 1. The unknown parameters
are: α = (α0, α1, β1), plus any unknown parameters in D.

2. IGARCH:
The IGARCH model of Engle and Bollerslev (1986) is a special case of a GARCH(1,1) with
α1 + β1 = 1, i.e.:

ht = α0 + α1a
2
t−1 + (1− α1)ht−1, (14)

where it is common to enforce α0 ≥ 0 and 0 < α1 < 1. The volatility dynamics here are akin
to those of a random walk.

3. RiskMetrics
RiskMetricsTM was developed by J.P. Morgan (1996), specifically for VaR calculation and is
apparently still a popular method. It is a special case of the IGARCH, where α0 = 0, and
is thus an exponentially weighted moving average (EWMA) of squared shocks; further the
restriction D(0, 1) ≡ N(0, 1) is used. The model form is:

ht = δht−1 + (1− δ)a2
t−1, (15)

where a decay factor of 0.94 is recommended by J.P. Morgan for computing daily volatility.

4. GJR-GARCH
The GJR-GARCH model by Glosten, Jaganathan, and Runkle (1993) captures asymmetric
volatility via an indicator term in the GARCH equation:

ht = α0 +
p∑
i=1

(αi + γiS
−
t−i)a

2
t−i +

q∑
j=1

βjht−j (16)

where S−t−i =
{

1 if at−i ≤ 0,
0 if at−i > 0,

Stationarity and positive volatility are ensured via:

α0 > 0, αi, βi ≥ 0,
p∑
i=1

αi + γi ≥ 0 and
p∑
i=1

αi +
q∑
i=1

βi + 0.5
p∑
i=1

γi < 1. (17)

The usual asymmetric volatility effect, i.e. falling markets increase volatility, implies that
negative shocks at time t lead to a larger rate of increase in conditional volatility, of αi + γi

at time t+ 1 (assuming γi > 0), whereas the positive shocks at time t lead to an increase in
rate of conditional volatility of αi at time t+ 1.
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5. Exponential GARCH
Nelson (1991) proposed the first asymmetric volatility model, to capture asymmetric volatil-
ity: EGARCH. The general EGARCH(p,q) form is:

ln(ht) = α0 +
p∑
i=1

αi

(
|at−i|+ γiat−i√

ht−i

)
+

q∑
j=1

βi ln(ht−j), (18)

where again we consider p = q = 1. Here the logarithm of volatility is modeled, allowing the
usual positivity restrictions on GARCH parameters to be relaxed. We expect the asymmetric
effect γ1 < 0, so that εt−1 < 0 increases the volatility ht, where εt−1 = at−1/

√
ht−1, but did

not enforce this. For stationary dynamics (see Nelson, 1991) it is natural to assume |β1| < 1.
The original specification of this model used the GED for the distribution of εt.

6. Threshold GARCH
A standard deviation TGARCH model was first proposed by Zakoian (1994). Instead, we
consider the dynamic variance TGARCH specification:

ht =

{
α

(1)
0 + Σp

i=1α
(1)
i a2

t−i + Σq
j=1β

(1)
j ht−j rt−d ≤ w

α
(2)
0 + Σp

i=1α
(2)
i a2

t−i + Σq
j=1β

(2)
j ht−j rt−d > w,

(19)

where d is threshold lag and w is the threshold value. Here each parameter can change in
response to lagged returns, at unknown lag d. We again set p = q = 1. The unknown model
parameters are (α(1)

0 , α
(1)
1 , β

(1)
1 , α(2)

0 , α
(2)
1 , β

(2)
1 ,w, d).

7. Markov switching GARCH models
Gray (1996) and Tsay (2005) proposed simple two-state Markov switching models, with dif-
ferent risk premium and different GARCH dynamics in each regime. Chen, So and Lin (2009)
proposed the double Markov switching GARCH model, where here we focus on the volatility
only. The Markov switching GARCH (MS-GARCH) is specified as:

ht = α
(st+1)
0 + Σp

i=1α
(st+1)
i a2

t−i + Σq
j=1β

(st+1)
j ht−j , (20)

where st is an unobserved discrete Markov process indicator. A two-regime model is employed,
with p = q = 1, and a Markov transition matrix P = p(i,j), where:

p(i,j) = Pr(st = j|st−1 = i) i, j = 1, 2.

The unknown parameters are (α(1)
0 , α

(1)
1 , β

(1)
1 , α(2)

0 , α
(2)
1 , β

(2)
1 , p1,1, p2,2), state vector s, plus

any parameters in D.

8. Stochastic volatility models
SV models are considered as an alternative approach to GARCH-type processes. Here, volatil-
ity has a specific source of randomness and is thus stochastic, as proposed by Taylor (1982,
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1986). The discrete-time symmetric SV model is:

at =
√
htεt, log ht+1 = α0 + α1 log ht + ut, (21)

where ut is a Gaussian innovation with zero mean and variance σ2
u. We restrict |α1| < 1 for

stationarity.

9. Threshold SV models
There are quite a few papers presenting or considering a nonlinear SV model framework: e.g.
So, Li and Lam (2002) presented the threshold SV (THSV) model to describe both mean
and volatility asymmetry, while Chen, Liu and So (2008) generalized the THSV model and
incorporated a heavy-tailed error distribution, plus estimation of the unobserved threshold
value and time delay parameter. We consider nonlinear SV models in asymmetric volatility
but without a mean equation. Therefore the THSV model is:

at =
√
htεt, log ht+1 = (α0 + β0st) + (α1 + β1st)log ht + ut, (22)

where the state variable st is defined by

st =
{

0 if rt−d < r,
1 if rt−d ≥ r,

with the delay d and threshold value r.

Apart from the Riskmetrics model, all the GARCH-type volatility models are estimated under
the following distributional assumptions of the unconditional shocks (a) standard normal, (b) the
Student-t, (c) GED, and (d) skewed Student-t distributions, where:

(c) Generalised Error Distribution: The density function for εt a standardized GED with
scale parameter σ is:

pε(εt) =
λ

2σΓ(1/λ)
exp

{
−
∣∣∣∣εtσ
∣∣∣∣λ
}
, (23)

where σ = [Γ( 1
λ)/Γ( 3

λ)]0.5. λ ∈ (0,∞) is the tail-behaviour determining parameter. When
λ > 2, the distribution has thinner tails than the normal; when λ = 2, it is exactly a normal
distribution with mean 0 and standard error σ; while for λ < 2, the distribution has excess
kurtosis relative to the normal. For real asset return data, we expect λ < 2.

(d) Skewed Student-t Distribution: To allow for skewness in the shape of the conditional
return density, the skewed Student-t distribution was defined by Hansen (1994) as:

pε(εt|ν, η) =


bc

[
1 + 1

ν−2

(
bεt+a
1−η

)2
]−(ν+1)/2

if εt < −a
b

bc

[
1 + 1

ν−2

(
bεt+a
1+η

)2
]−(ν+1)/2

if εt ≥ −a
b

(24)
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where degrees of freedom ν and skewness parameter η satisfy 2 < ν < ∞, and −1 < η < 1,
respectively. The constants a, b, and c are fixed as:

a = 4ηc
(
ν−2
ν−1

)
; b2 = 1 + 3η2 − a2; c =

Γ

(
ν+1

2

)
√
π(ν−2)Γ(ν2 )

.

This distribution already has zero mean and unit variance. We use the notation St(ν, η). The
standardized Student-t distribution is a special case of this skewed Student-t, when η = 0.
The Gaussian is thus the limiting distribution as ν →∞, also when η = 0.

The symmetric and skewed Student-t and the GED all allow fat-tailed error distributions, compared
to the Gaussian, while each contains the Gaussian as a special case.
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Figure 3. VaR forecasts for the global financial crisis period (a) 1-day-ahead and (b) and ten-day
ahead VaR forecasts at 1% level.
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Table II. Summary statistics for parameter estimates from 100 simulated data sets from the
EGARCH(1,1) model.

n = 2000 n = 4000
True Mean Std Lower Upper Mean Std Lower Upper

GED
α0 -0.20 -0.232 0.043 -0.322 -0.158 -0.210 0.028 -0.269 -0.158
α1 0.20 0.220 0.038 0.151 0.299 0.204 0.026 0.155 0.259
γ -0.26 -0.259 0.121 -0.504 -0.038 -0.269 0.085 -0.441 -0.110
β 0.93 0.907 0.028 0.844 0.952 0.922 0.017 0.885 0.951
λ 1.00 1.003 0.042 0.924 1.087 1.001 0.029 0.944 1.059

GED
α0 -0.20 -0.226 0.038 -0.307 -0.157 -0.213 0.024 -0.263 -0.169
α1 0.20 0.213 0.035 0.150 0.285 0.208 0.023 0.165 0.255
γ -0.26 -0.273 0.103 -0.482 -0.084 -0.260 0.067 -0.391 -0.136
β 0.93 0.905 0.027 0.844 0.949 0.920 0.015 0.888 0.947
λ 1.50 1.505 0.069 1.374 1.645 1.496 0.049 1.403 1.593

GED
α0 -0.20 -0.222 0.034 -0.294 -0.161 -0.204 0.023 -0.251 -0.162
α1 0.20 0.212 0.032 0.154 0.279 0.200 0.022 0.158 0.245
γ -0.26 -0.262 0.090 -0.448 -0.097 -0.277 0.065 -0.409 -0.154
β 0.93 0.909 0.023 0.856 0.947 0.923 0.014 0.892 0.948
λ 2.00 2.015 0.101 1.823 2.221 2.001 0.071 1.866 2.143
t
α0 -0.20 -0.227 0.040 -0.311 -0.156 -0.211 0.026 -0.264 -0.163
α1 0.20 0.212 0.036 0.147 0.287 0.206 0.025 0.160 0.256
γ -0.26 -0.252 0.109 -0.474 -0.049 -0.270 0.071 -0.412 -0.140
β 0.93 0.901 0.030 0.834 0.948 0.920 0.016 0.885 0.948
ν 7.00 7.231 1.180 5.386 9.974 7.304 0.815 5.928 9.117
st
α0 -0.20 -0.225 0.040 -0.309 -0.155 -0.211 0.026 -0.264 -0.164
α1 0.20 0.215 0.037 0.148 0.291 0.207 0.025 0.160 0.257
γ -0.26 -0.273 0.112 -0.502 -0.065 -0.279 0.077 -0.438 -0.136
β 0.93 0.909 0.026 0.850 0.952 0.921 0.016 0.887 0.948
ν 7.00 7.073 1.101 5.326 9.621 7.194 0.784 5.859 8.923
η -0.05 -0.047 0.030 -0.106 0.012 -0.051 0.021 -0.093 -0.009
st
α0 -0.20 -0.208 0.028 -0.266 -0.158 -0.202 0.019 -0.240 -0.167
α1 0.20 0.205 0.029 0.153 0.266 0.200 0.020 0.164 0.240
γ -0.26 -0.276 0.105 -0.490 -0.088 -0.281 0.073 -0.431 -0.147
β 0.93 0.923 0.016 0.889 0.949 0.926 0.010 0.905 0.945
ν 7.00 7.245 1.173 5.417 9.955 7.151 0.780 5.831 8.883
η -0.50 -0.500 0.027 -0.551 -0.446 -0.498 0.019 -0.534 -0.460
st
α0 -0.20 -0.201 0.006 -0.213 -0.190 -0.200 0.004 -0.208 -0.194
α1 0.20 0.200 0.007 0.188 0.213 0.200 0.004 0.192 0.209
γ -0.26 -0.259 0.022 -0.301 -0.214 -0.259 0.014 -0.287 -0.232
β 0.93 0.930 0.003 0.924 0.935 0.930 0.002 0.927 0.933
ν 7.00 7.441 0.843 6.185 9.247 7.184 0.524 6.366 8.220
η -0.99 -0.980 0.006 -0.988 -0.965 -0.985 0.003 -0.989 -0.977

(1): t and st refer to Student-t and skewed Student-t errors, respectively.
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Table III. Summary statistics for 1-day VaR forecast over the time period from July 2005 to Febru-
ary 2008 at 1% and 5% level.

Violation Mean daily AD of violation Violation Zone
Models rates % capital charge Max Mean Penalty number

α = 1% RiskMetrics 2.72 6.9410 1.9939 0.4138 0.6284 16 Yellow
GARCH-n 1.53 6.1738 1.9952 0.5269 0.0 9
GARCH-t 1.19 6.5115 1.8209 0.5370 0.0 7
GARCH-GED 1.02 6.5396 1.8053 0.6127 0.0 6
GARCH-st 1.02 6.9327 1.6227 0.4714 0.0 6
GJR-GARCH-n 1.36 6.1262 1.4457 0.4401 0.0 6
GJR-GARCH-t 1.02 6.4372 1.2765 0.4854 0.0 8
GJR-GARCH-GED 1.02 6.4556 1.2732 0.4745 0.0 6
GJR-GARCH-st 1.02 6.8147 1.0981 0.3549 0.0 6
EGARCH-n 1.53 6.1024 1.5276 0.4229 0.0 9
EGARCH-t 1.36 6.3696 1.3857 0.4060 0.0 8
EGARCH-GED 1.02 6.4004 1.3869 0.5201 0.0 6
EGARCH-st 0.85 6.7258 1.1990 0.4911 0.0 5
TGARCH-n 1.70 6.5370 1.9050 0.5104 0.2921 10 Yellow
TGARCH-t 1.36 6.3350 1.7288 0.4949 0.0 8
TGARCH-GED 1.36 6.3413 1.7149 0.4994 0.0 8
TGARCH-st 1.36 6.3529 1.7222 0.4958 0.0 8
IGARCH-n 1.53 6.1865 1.8442 0.5031 0.0 9
IGARCH-t 1.19 6.5776 1.6668 0.5113 0.0 7
IGARCH-GED 1.19 6.5702 1.6579 0.5241 0.0 7
IGARCH-st 0.85 7.0254 1.4346 0.5373 0.0 5
MS-n 1.53 6.2370 2.0112 0.5034 0.0 9
MS-t 1.02 6.5736 1.8466 0.5659 0.0 6
MS-GED 1.02 6.6150 1.8346 0.5854 0.0 6
MS-st 1.02 6.5911 1.8320 0.5951 0.0 6
SV-n 1.53 6.0501 2.0343 0.5343 0.0 9
SV-t 1.02 6.4846 1.1786 0.6450 0.0 6
THSV-n 2.04 6.6032 2.2179 0.5230 0.4121 12 Yellow
THSV-t 1.53 6.1971 1.9638 0.6160 0.0 9

α = 5% RiskMetrics 6.29 - 2.9119 0.5670 -
GARCH-n 5.10 - 2.9128 0.5868 -
GARCH-t 5.10 - 2.9370 0.6204 -
GARCH-GED 5.10 - 2.8992 0.5859 -
GARCH-st 4.93 - 1.6227 0.4714 -
GJR-GARCH-n 5.27 - 2.5243 0.5065 -
GJR-GARCH-t 5.44 - 2.5469 0.5256 -
GJR-GARCH-GED 5.27 - 2.5156 0.5059 -
GJR-GARCH-st 5.10 - 1.0981 0.3549 -
EGARCH-n 5.27 - 2.5822 0.5187 -
EGARCH-t 5.61 - 2.6083 0.5074 -
EGARCH-GED 5.27 - 2.5859 0.5072 -
EGARCH-st 5.27 - 1.1990 0.4911 -
TGARCH-n 5.44 - 2.8490 0.5765 -
TGARCH-t 5.78 - 2.8738 0.5617 -
TGARCH-GED 5.27 - 2.8370 0.5884 -
TGARCH-st 5.78 - 1.7222 0.4958 -
IGARCH-n 4.93 - 2.8061 0.5931 -
IGARCH-t 5.44 - 2.8433 0.5712 -
IGARCH-GED 5.10 - 2.8057 0.5762 -
IGARCH-st 4.76 - 1.4346 0.5373 -
MS-n 4.93 - 2.9241 0.5918 -
MS-t 5.10 - 2.9512 0.5996 -
MS-GED 4.93 - 2.9173 0.5897 -
MS-st 5.10 - 1.8320 0.5951 -
SV-n 5.44 - 2.9554 0.5704 -
SV-t 3.92 - 1.8046 0.5566 -
THSV-n 5.78 - 3.0843 0.5986 -
THSV-t 5.78 - 3.0640 0.6291 -
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Table IV. Summary statistics for 1-day VaR forecast over the time period from August 2008 to
December 2009 at 1% and 5% levels.

Violation Mean daily AD of violation Violation Zone
Models rates % capital charge Max Mean Penalty number

α = 1% RiskMetrics 2.85 16.0731 1.8785 0.6485 0.6662 9 Yellow
GARCH-n 2.22 14.3194 1.8719 0.7963 0.4701 7 Yellow
GARCH-t 1.58 13.0971 1.7594 0.9461 0.0 5 Green
GARCH-GED 1.58 13.0876 1.7702 0.9300 0.0 5 Green
GARCH-st 1.58 13.9422 1.5949 0.7281 0.0 5 Green
GJR-GARCH-n 3.16 14.8051 1.8134 0.6631 0.7580 10 Yellow
GJR-GARCH-t 2.53 14.7487 1.7184 0.6935 0.5706 8 Yellow
GJR-GARCH-GED 2.53 14.7377 1.7316 0.6800 0.5706 8 Yellow
GJR-GARCH-st 1.90 14.7298 1.5661 0.7063 0.3632 6 Yellow
EGARCH-n 4.11 14.5129 1.6121 0.5983 1.0 13 Red
EGARCH-t 2.53 13.6267 1.4990 0.8194 0.5706 8 Yellow
EGARCH-GED 2.53 13.5988 1.5195 0.8017 0.5706 8 Yellow
EGARCH-st 2.22 13.9888 1.3186 0.7026 0.4701 7 Yellow
TGARCH-n 1.90 13.8305 1.8613 0.9585 0.3632 6 Yellow
TGARCH-t 1.90 14.6257 1.7547 0.7708 0.3632 6 Yellow
TGARCH-GED 1.90 14.6817 1.7878 0.7561 0.3632 6 Yellow
TGARCH-st 1.90 14.6806 1.7476 0.7621 0.3632 6 Yellow
IGARCH-n 1.90 14.4787 1.8534 0.8203 0.3632 6 Yellow
IGARCH-t 1.58 13.7040 1.7249 0.8046 0.0 5 Green
IGARCH-GED 1.58 13.6782 1.7460 0.7743 0.0 5 Green
IGARCH-st 1.58 14.7171 1.5414 0.5613 0.0 5 Green
MS-n 2.53 14.5145 1.8755 0.7306 0.5706 8 Yellow
MS-t 1.58 12.8460 1.7673 0.9710 0.0 5 Green
MS-GED 1.58 12.8570 1.7756 0.9538 0.0 5 Green
MS-st 1.58 12.9057 1.7617 0.9552 0.0 5 Green
SV-n 3.80 15.3247 1.8177 0.7905 1.0 12 Red
SV-t 3.80 15.5351 1.8859 0.7766 1.0 12 Red
THSV-n 4.11 15.0285 1.9473 0.7461 1.0 13 Red
THSV-t 2.85 14.8220 1.9787 0.9578 0.6662 9 Yellow

α = 5% RiskMetrics 5.70 - 2.8836 1.1481 - 18
GARCH-n 6.33 - 2.5240 1.0811 - 20
GARCH-t 6.65 - 2.6710 1.0637 - 21
GARCH-GED 6.33 - 2.5601 1.0685 - 20
GARCH-st 6.01 - 2.5288 1.0490 - 19
GJR-GARCH-n 6.65 - 2.3643 0.9913 - 21
GJR-GARCH-t 6.65 - 2.3694 1.0054 - 21
GJR-GARCH-GED 6.65 - 2.3588 0.9705 - 21
GJR-GARCH-st 5.70 - 2.2991 1.0628 - 18
EGARCH-n 7.91 - 2.6377 1.1202 - 25
EGARCH-t 7.59 - 2.7201 1.1769 - 24
EGARCH-GED 7.28 - 2.6604 1.1973 - 23
EGARCH-st 6.96 - 2.6315 1.1924 - 22
TGARCH-n 6.33 - 2.4742 1.1005 - 20
TGARCH-t 6.33 - 2.6080 1.1314 - 20
TGARCH-GED 6.33 - 2.5451 1.0833 - 20
TGARCH-st 6.33 - 2.5871 1.1215 - 20
IGARCH-n 5.70 - 2.3926 1.0611 - 18
IGARCH-t 5.70 - 2.5165 1.1056 - 18
IGARCH-GED 5.70 - 2.3844 1.0458 - 18
IGARCH-st 5.38 - 2.3541 1.0231 - 17
MS-n 6.33 - 2.5323 1.1190 - 20
MS-t 6.65 - 2.6741 1.1023 - 21
MS-GED 6.33 - 2.5654 1.1149 - 20
MS-st 6.33 - 2.6500 1.1438 - 20
SV-n 6.96 - 3.4082 1.3281 - 22
SV-t 7.28 - 3.4188 1.3105 - 23
THSV-n 7.59 - 3.3565 1.2375 - 24
THSV-t 6.65 - 3.5129 1.4970 - 21
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Table V. Summary statistics for 10-day VaR forecast over the time period from July 2005 to Febru-
ary 2008 at 1% level.

Violation Mean Max Mean Violation
Models rates % MRC AD AD Penalty number

α = 1% RiskMetrics 2.94 23.8549 2.8712 1.3516 1.0 17
GARCH-n 1.55 20.5372 3.1377 1.3509 0.0 9
GARCH-t 1.73 22.6950 2.1331 0.9699 0.3018 10
GARCH-GED 1.38 20.6476 2.6871 1.2621 0.0 8
GARCH-st 1.73 22.7209 3.0982 1.2371 0.3018 10
GJR-GARCH-n 1.73 24.4863 1.7257 0.7946 0.3018 10
GJR-GARCH-t 1.73 24.3045 1.7436 0.6610 0.3018 10
GJR-GARCH-GED 1.73 24.5265 1.5587 0.7595 0.3018 10
GJR-GARCH-st 1.55 22.9909 1.5799 0.7104 0.0 9
EGARCH-n 1.04 22.8345 1.0846 0.6005 0.0 6
EGARCH-t 1.38 22.4090 1.1944 0.6784 0.0 8
EGARCH-GED 1.38 22.6314 1.4140 0.6635 0.0 8
EGARCH-st 1.21 22.9848 1.0897 0.5954 0.0 7
TGARCH-n 2.07 22.2895 3.1077 1.1523 0.4228 12
TGARCH-t 1.55 19.9576 2.9191 1.3728 0.0 9
TGARCH-GED 1.90 22.2917 2.8059 1.1400 0.3636 11
TGARCH-st 1.73 22.0230 2.8814 1.2719 0.3018 10
IGARCH-n 1.90 23.1623 2.3457 1.0436 0.3636 11
IGARCH-t 1.55 20.8814 1.9460 1.1676 0.0 9
IGARCH-GED 1.38 20.7364 2.3458 1.3886 0.0 8
IGARCH-st 1.38 21.9034 1.7871 1.0428 0.0 8
MS-n 1.38 20.9498 2.5762 1.1561 0.0 8
MS-t 1.55 20.9517 3.4019 1.1469 0.0 9
MS-GED 1.38 21.1400 2.9161 1.1839 0.0 8
MS-st 1.38 21.0313 2.6669 1.1512 0.0 8
SV-n 1.55 21.4229 2.2366 0.8763 0.0 9
SV-t 1.55 21.1760 6.2874 1.8754 0.0 9
THSV-n 1.73 21.9426 2.4967 1.1147 0.3018 10
THSV-t 2.07 22.4779 2.0721 0.9318 0.4228 12

(1): Ranking is based on the rank sum - min(rank) +1.
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Table VI. Summary statistics for 10-day VaR forecast over the time period from August 2008 to
December 2009 at 1% level.

Violation Mean Max Mean Violation
Models rates % MRC AD AD Penalty number

α = 1% RiskMetrics 4.56 56.4562 14.3576 5.9010 1.0 14
GARCH-n 4.56 55.7485 13.5591 4.2880 1.0 14
GARCH-t 3.91 56.3347 13.9064 5.0868 1.0 12
GARCH-GED 4.23 56.4016 12.7615 4.5084 1.0 13
GARCH-st 4.23 56.7473 13.0827 4.4584 1.0 13
GJR-GARCH-n 2.93 53.5776 14.3099 5.4996 0.6908 9
GJR-GARCH-t 3.26 56.2045 14.0292 5.4960 0.7842 10
GJR-GARCH-GED 3.26 55.7099 14.2936 5.4079 0.7842 10
GJR-GARCH-st 3.26 57.4997 13.0436 4.9579 0.7842 10
EGARCH-n 3.91 51.9789 15.7044 6.7057 1.0 12
EGARCH-t 4.23 52.5195 15.5255 6.2060 1.0 13
EGARCH-GED 4.23 52.1868 16.2898 6.2683 1.0 13
EGARCH-st 4.23 53.7964 15.2139 6.0211 1.0 13
TGARCH-n 3.58 55.3203 13.6326 5.2069 1.0 11
TGARCH-t 3.58 56.4543 12.9199 5.0923 1.0 11
TGARCH-GED 3.58 56.1658 13.2295 5.0925 1.0 11
TGARCH-st 4.23 56.3909 13.1970 4.5041 1.0 13
IGARCH-n 3.26 56.1735 11.4370 4.4251 0.7842 10
IGARCH-t 3.58 59.8153 13.1993 4.4120 1.0 11
IGARCH-GED 3.26 56.6589 12.9220 5.0194 0.7842 10
IGARCH-st 2.93 58.6673 11.6024 4.3722 0.6908 9
MS-n 4.23 54.7926 13.3201 4.5804 1.0 13
MS-t 4.23 55.1816 13.1817 4.6993 1.0 13
MS-GED 4.89 54.9963 14.0789 4.0494 1.0 15
MS-st 3.58 55.4635 13.1504 5.4578 1.0 11
SV-n 4.89 54.4702 14.5713 5.7060 1.0 15
SV-t 4.23 54.0484 14.3183 7.1610 1.0 13
THSV-n 4.89 51.7328 15.1607 5.8934 1.0 15
THSV-t 4.89 52.9577 15.8645 7.3028 1.0 15
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Table VII. P-values of unconditional and conditional coverage tests for each model

Validation period July 2005 to February 2008 August 2008 to December 2009
Models LRuc LRcc LRuc LRcc

RiskMetrics 0.0005 0.0005 0.0070 0.0134
GARCH-n 0.2303 0.1458 0.0613 0.1481
GARCH-t 0.6522 0.1659 0.3376 0.5825
GARCH-GED 0.9605 0.9388 0.3376 0.5825
GARCH-st 0.9605 0.9388 0.3376 0.5825
GJR-GARCH-n 0.4048 0.6329 0.0020 0.0062
GJR-GARCH-t 0.9605 0.9388 0.0219 0.0586
GJR-GARCH-GED 0.9605 0.9388 0.0219 0.0586
GJR-GARCH-st 0.9605 0.9388 0.1532 0.3209
EGARCH-n 0.2303 0.1458 0.0000 0.0001
EGARCH-t 0.4048 0.6329 0.0219 0.0299
EGARCH-GED 0.9605 0.9388 0.0219 0.0299
EGARCH-st 0.7081 0.8931 0.0613 0.1481
TGARCH-n 0.1206 0.1088 0.1532 0.3209
TGARCH-t 0.4048 0.1691 0.1532 0.3209
TGARCH-GED 0.4048 0.1691 0.1532 0.3209
TGARCH-st 0.4048 0.1691 0.1532 0.3209
IGARCH-n 0.2303 0.1458 0.1532 0.3209
IGARCH-t 0.6522 0.1659 0.3376 0.5825
IGARCH-GED 0.6522 0.1659 0.3376 0.5825
IGARCH-st 0.7081 0.8931 0.3376 0.5825
MS-n 0.2303 0.1458 0.0219 0.0586
MS-t 0.9605 0.9388 0.3376 0.5825
MS-GED 0.9605 0.9388 0.3376 0.5825
MS-st 0.9605 0.9388 0.3376 0.5825
SV-n 0.2303 0.1458 0.0001 0.0005
SV-t 0.9605 0.1338 0.0001 0.0005
THSV-n 0.0262 0.0419 0.0000 0.0001
THSV-t 0.2303 0.1458 0.0070 0.0134
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