1,160 research outputs found

    Dislocation-Mediated Melting: The One-Component Plasma Limit

    Full text link
    The melting parameter Γm\Gamma_m of a classical one-component plasma is estimated using a relation between melting temperature, density, shear modulus, and crystal coordination number that follows from our model of dislocation-mediated melting. We obtain Γm=172±35,\Gamma_m=172\pm 35, in good agreement with the results of numerous Monte-Carlo calculations.Comment: 8 pages, LaTe

    First-Principles Calculation of the Superconducting Transition in MgB2 within the Anisotropic Eliashberg Formalism

    Full text link
    We present a study of the superconducting transition in MgB2 using the ab-initio pseudopotential density functional method and the fully anisotropic Eliashberg equation. Our study shows that the anisotropic Eliashberg equation, constructed with ab-initio calculated momentum-dependent electron-phonon interaction and anharmonic phonon frequencies, yields an average electron-phonon coupling constant lambda = 0.61, a transition temperature Tc = 39 K, and a boron isotope-effect exponent alphaB = 0.31 with a reasonable assumption of mu* = 0.12. The calculated values for Tc, lambda, and alphaB are in excellent agreement with transport, specific heat, and isotope effect measurements respectively. The individual values of the electron-phonon coupling lambda(k,k') on the various pieces of the Fermi surface however vary from 0.1 to 2.5. The observed Tc is a result of both the raising effect of anisotropy in the electron-phonon couplings and the lowering effect of anharmonicity in the relevant phonon modes.Comment: 4 pages, 3 figures, 1 tabl

    Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and Îœp nucleosynthesis processes

    Get PDF
    © 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∌10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr–Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous Îœp-process simulations.Peer reviewe

    Effect of magnetic and non-magnetic impurities on highly anisotropic superconductivity

    Full text link
    We generalize Abrikosov-Gor'kov solution of the problem of weakly coupled superconductor with impurities on the case of a multiband superconductor with arbitrary interband order parameter anisotropy, including interband sign reversal of the order parameter. The solution is given in terms of the effective (renormalized) coupling matrix and describes not only TcT_c suppression but also renormalization of the superconducting gap basically at all temperatures. In many limiting cases we find analytical solutions for the critical temperature suppression. We illustrate our results by numerical calculations for two-band model systems.Comment: 18 pages (12pt) RevTeX, 4 postscript figure

    Franck-Condon Effect in Central Spin System

    Full text link
    We study the quantum transitions of a central spin surrounded by a collective-spin environment. It is found that the influence of the environmental spins on the absorption spectrum of the central spin can be explained with the analog of the Franck-Condon (FC) effect in conventional electron-phonon interaction system. Here, the collective spins of the environment behave as the vibrational mode, which makes the electron to be transitioned mainly with the so-called "vertical transitions" in the conventional FC effect. The "vertical transition" for the central spin in the spin environment manifests as, the certain collective spin states of the environment is favored, which corresponds to the minimal change in the average of the total spin angular momentum.Comment: 8 pages, 8 figure

    Co-existence of lung carcinoma metastasis and enchondroma in the femur of a patient with Ollier disease

    Get PDF
    Tumour-to-tumour metastasis is very unusual and has been defined as a tumour metastasis into another histologically different tumour. It is extremely rare in bone. We report a case of lung squamous cell carcinoma metastasized to an enchondroma in the femur of a patient with Ollier disease. A 60-year-old female had a history of a poorly differentiated squamous cell carcinoma of the lung. She underwent a video-assisted thoracoscopic lobectomy, and a follow-up MRI scan showed three lesions in the left distal femur and proximal tibia, which were initially interpreted as metastasis on radiology. Resection of the left proximal tibial lesion was performed, and the pathological findings were consistent with enchondroma with no evidence of metastasis. Subsequent curettage of lesions in the distal left femur revealed metastatic poorly differentiated carcinoma with foci of hyaline cartilage, which was most consistent with metastatic carcinoma in a pre-existing enchondroma. The MRI films were re-reviewed. Characteristic MRI features of enchondroma were found in the lesion in the left proximal tibia and one of the lesions in the left distal femur, while the features of the other lesion in the left distal femur included cortical destruction and extensive oedema in surrounding soft tissue, which were consistent with a malignant tumour. In addition, the enchondroma in the lateral condyle showed blurring and irregular inner margin and adjacent bone oedema, which likely represents a co-existing metastatic tumour and enchondroma. The difference in lineage was confirmed by immunohistochemistry. The final diagnosis was metastatic poorly differentiated carcinoma of the lung into a co-existent enchondroma. The diagnosis can be challenging and could be easily overlooked both radiologically and histologically. Thorough clinical and radiological information is critical for the diagnosis, and despite a very unusual event, awareness of the tumour-to-tumour metastasis phenomenon can avoid an inaccurate diagnosis by the pathologist, therefore preventing inappropriate clinical intervention

    Quantum Correlation in One-dimensional Extend Quantum Compass Model

    Full text link
    We study the correlations in the one-dimensional extended quantum compass model in a transverse magnetic field. By exactly solving the Hamiltonian, we find that the quantum correlation of the ground state of one-dimensional quantum compass model is vanishing. We show that quantum discord can not only locate the quantum critical points, but also discern the orders of phase transitions. Furthermore, entanglement quantified by concurrence is also compared.Comment: 8 pages, 14 figures, to appear in Eur. Phys. J.

    Prediction of Mechanical Properties of Polymers With Various Force Fields

    Get PDF
    The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide
    • 

    corecore