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Instability of the Liquid Metal–Pattern Interface
in the Lost Foam Casting of Aluminum Alloys

W.D. GRIFFITHS and M.J. AINSWORTH

The nature of the liquid metal–pattern interface during mold filling in the Lost Foam casting of
aluminum alloys was investigated using real-time X-ray radiography for both normal expanded
polystyrene, and brominated polystyrene foam patterns. Filling the pattern under the action of
gravity from above or below had little effect on properties, both cases resulting in a large scatter
of tensile strength values, (quantified by their Weibull Modulus). Countergravity filling at
different velocities demonstrated that the least scatter of tensile strength values (highest Weibull
Modulus) was associated with the slowest filling, when a planar liquid metal–pattern interface
occurred. Real-time X-ray radiography showed that the advancing liquid metal front became
unstable above a certain critical velocity, leading to the entrainment of the degrading pattern
material and associated defects. It has been suggested that the transition of the advancing liquid
metal–pattern interface into an unstable regime may be a result of Saffman–Taylor Instability.

DOI: 10.1007/s11661-016-3461-3
� The Author(s) 2016. This article is published with open access at Springerlink.com

I. INTRODUCTION

IN Lost Foam casting a foamed polymer pattern,
usually polystyrene, (EPS), is placed in a mold made
from loose dry silica sand and compacted by vibration.
The mold is then filled and the pattern degraded in situ
during mold filling by the heat of the liquid metal. The
process gives great flexibility of design but is also prone
to numerous types of defects, such as entrainment of the
degrading pattern material, (leading to porosity), folds
and laps, and misrun due to the liquid metal losing heat
as it slowly fills the mold, causing premature solidifica-
tion. The work reported here was aimed at improving
understanding of the nature of the metal–pattern
interface, in order to try to reduce defects associated
with entrainment of the degrading pattern.

It is generally understood that the interface consists of
a mixture of gaseous and liquid polymer byproducts and
several investigations have been carried out into its
nature. Shivkumar et al.,[1] placed glass plates against
the pattern and observed a gas layer between the metal
and the foam of about 5 mm in thickness, at a
temperature of about 1023 K (750 �C). (But as the
normal pattern coating is permeable, the thickness of the
gas layer was presumably increased due to the use of an
impermeable glass plate.) It was reported that as liquid
metal temperature increased, so did gap thickness, and
Polymethlymethacrylate (PMMA) foam patterns were

observed to produce a thicker gas layer than expanded
polystyrene (EPS) patterns. Yao and Shivkumar[2] also
proposed that a gas layer would build up in front of the
advancing liquid metal, with the amount of gas increas-
ing with increasing metal temperature, and increased
with the use of PMMA compared to EPS, but the
thickness of the gas layer in the case of Al was described
by them as ‘‘negligible.’’ Shivkumar,[3] in a model of
temperature loss occurring during the Lost Foam
casting of Al, described the interface as being a layer
of 1 to 2 mm in thickness, and formed predominantly of
gas, but also containing viscous liquid residues from the
foam degradation. The gas was assumed to be a mixture
of styrene, occurring not only as a monomer, but also as
dimers, trimers, and tetramers. However, the model
indicated that a continuous gas layer should not be
expected to exist, as even a layer of gas of 0.5 mm in
thickness interposed too great a barrier to interfacial
heat transfer, and in the final model they were obliged to
assume no gas at the metal–pattern interface.
Yang et al.[4] described the interface of the pattern and

the liquid Al as consisting of two parts, a thermally
affected but undegraded zone, 1 to 3 mm in thickness,
adjacent to the pattern, and a zone of pattern degrada-
tion byproducts, also 1 to 3 mm in thickness, adjacent to
the advancing liquid Al. For the case of casting of Al, it
was determined that the interfacial pressure was in the
region of 200 to 500 Pa, (much lower than the pressures
of 11 to 26 kPa found in the case of cast iron), and it was
deduced that the interface should therefore largely
consist of liquid degradation byproducts, which would
be required to be removed through the permeable
pattern coating.
Warner et al.[5] and Molibog and Littleton,[6]

described the interface between the foam pattern and
the liquid metal as a kinetic zone, a gap or interface
containing both liquid and gaseous byproducts from the
foam degradation process, mixed with air. Littleton
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et al.[7] showed how the extent of the kinetic zone varied
according to the pouring temperature and alloy cast
(i.e., Al or Fe alloys), and the foam type, (EPS or
PMMA). Sun et al.[8] used real-time X-ray imaging to
examine the filling of Lost Foam patterns of variable
density and degree of bead fusion, and varying coating
permeability. It was found that the liquid metal front
developed coarse fingers as it passed through regions of
the pattern having low bead fusion, but displayed a
planoconvex front when filling patterns of normal bead
fusion. Sands and Shivkumar[9] proposed this kinetic
zone to be a largely gaseous layer of between 1 to 3 mm,
with the gap thickness affected by both coating and
mold permeability. It was also observed that polydis-
persity, (the variation in molecular weight of a polymer),
affected the rate of gas production.

To summarize, this earlier work varied considerably
in its conclusions, with researchers suggesting different
thicknesses of the interfacial gap, and containing either
largely vapor or largely liquid foam pattern degradation
byproducts.

More detailed work has been aimed at understanding
how the degradation of the pattern at the interface can
lead to defects. Sun et al.[10] proposed that liquid
polystyrene produced at the pattern–metal interface
would wet the permeable coating surface and then be
wicked into it. With increasing temperature of the liquid
polystyrene degradation byproducts, and increasing
time, the molecular weight of the liquid polystyrene
would be reduced, its viscosity would be reduced, and
wetting and wicking would occur more readily, (espe-
cially with increased permeability of the coating).
However, these wetting and wicking processes would
occur after the mold had been filled. Zhao et al.[11]

proposed a different mechanism for the removal of the
liquid polystyrene, in which the liquid degradation
byproducts formed globules adhering to the coating
surface, with heat from the surrounding liquid metal
creating a gaseous (and therefore insulating) layer

between the metal and the globule, preventing its rapid
vaporization, (essentially the Leidenfrost Phenomenon
or film boiling). Passage of the vapor byproduct through
the permeable coating would only occur in the thin
annulus of exposed coating around each liquid globule.
The polystyrene liquid globules would therefore only
slowly reduce in size, and if the casting solidified before
they were removed, surface defects would be formed.
Both explanations seem to be partly true, with a critical
molecular weight needed for wetting of, and wicking
into, a coating. Griffiths and Davies[12] determined the
values of this critical molecular weight, and how it
varied with coating permeability.
Barone and Caulke[13,14] identified several mecha-

nisms by which the foam pattern degraded during mold
filling, namely, (i). a contact mode, (ii). an ablation
mode,[15] (described as the usual method of foam
degradation), (iii). a collapse mode, and (iv). a foam
engulfment mode. They proposed[14] that a thin ‘‘de-
composition layer,’’ consisting of a foam containing a
mixture of liquid and gas byproducts was formed at the
interface, of about 150 lm in thickness. Elsewhere[15] the
decomposition layer was proposed to be around 100 lm
in depth, and contain 99 pct gas by volume, although
this would seem to contradict other workers, who
reported greater amounts of liquid degradation byprod-
ucts. Caulk[16] also identified circumstances under which
a gas gap, (the ‘‘gap mode’’), could form between the
metal and the pattern, due to vaporization of the
polymer. It was proposed that the gap width could be
between 5 and 20 mm, which seems excessive, although
consistent with their neutron radiography observations
of the interface. It was suggested that these pattern
degradation byproducts usually traveled normal to the
advancing liquid metal front and passed out through the
coating. However, when the liquid metal penetrated into
the connected interbead porosity in the pattern (perhaps
due to poor bead fusion[13]), this could lead to engulf-
ment of parts of the degrading foam pattern.[15,17]

Research to date has therefore generally understood
the metal–pattern interface in terms of a gap between
the liquid metal and the polymer foam pattern, filled
with different ratios of gaseous and liquid degradation
byproducts. This was based on assumptions that the
structure of the interface is largely governed by the
transfer of heat from the liquid metal through the
material of the interface, into the foam pattern, resulting
in its breakdown. However, an alternative view of the
interface in Lost Foam casting of Al may be proposed,
where the interface can be seen as being between two
fluids, a viscous low-density fluid, (the mixed gaseous
and liquid polymer byproducts), and a lower-viscosity,
higher-density liquid, (the liquid metal). This interface
could be prone to the development of an instability
which could affect the interface behavior.[18]

Three types of interfacial instability can commonly
occur at fluid–fluid interfaces. Firstly, Rayleigh–Taylor
Instability occurs at the interface of two fluids of
different densities, when their interface is accelerated in
a direction normal to the interface.[19] This occurs, for
example, when a denser fluid overlies a less-dense fluid,
and their interface is accelerated downwards by the

Fig. 1—Diagram of the top- and bottom-gated castings, filled under
the action of gravity.
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action of gravity, resulting in an unstable interface
and mixing between the two fluids. Secondly, Kelvin–
Helmholtz Instability occurs at the interface between
fluids of different densities, experiencing amotion parallel
to their interface,[20,21] e.g., waves occurring on a body of
water due to the action of wind. Thirdly, Saffman–Taylor
Instability occurs at the interface between two fluids of
different densities and different viscosities, when the
interface between a high density, low-viscosity liquid,

and a low-density, high-viscosity liquid, is accelerated in
the direction normal to the interface.[22]

During development of the commercial casting sim-
ulation software Flow-3D, Hirt suggested that when the
liquid metal enters the mold from above then the
interface, being accelerated downwards through the
foam pattern by the action of gravity, should lead to
Rayleigh–Taylor Instability. It was further observed
that if the casting was filled from below, in a

Fig. 3—Diagram showing the experimental arrangement used to degrade foamed polymer samples.

Fig. 2—Diagram of the countergravity casting arrangement.

METALLURGICAL AND MATERIALS TRANSACTIONS A VOLUME 47A, JUNE 2016—3139



countergravity fashion, then the action of gravity should
smooth out any irregularities in the interface, which
would presumably benefit the quality of the casting.[23]

The work reported here was aimed at investigating the
advantages of countergravity filling of Lost Foam molds
with Al alloy, compared to filling the mold from above,
and involved an investigation of the nature of the foam
pattern–liquid metal interface using real-time X-ray
radiography. The results have been interpreted to
determine if an interfacial instability is likely to occur.

II. EXPERIMENTAL PROCEDURE

A. Top-Poured Cast Plates

Vertically oriented foam plate patterns were cast to
determine the effect of filling from the top compared to
filling from the bottom on the properties of Al alloy
Lost Foam castings. The foam plate patterns had

dimensions 360 mm in length, 200 mm in width, and
15 mm in thickness, and were attached to conventional
square section running systems with ingate areas of 10.4
cm2. The running system was arranged so as to
introduce the liquid metal at either the top or bottom
of the plates, (see Figure 1). The mean pattern density
was 30 kg m�3 and the polystyrene plate patterns were
coated with a commercial water-based slurry coating,
which was allowed to dry, before being placed in a
molding box of internal dimensions 0.45 9 0.11 9 0.83
m. The pattern was supported by loose unbonded silica
sand, compacted by vibration.
The plates were cast at 1053 K (780 �C) with a Sr

pre-modified Al-1 wt pct Si alloy, with a 200-mm head
height between the bottom of the pouring basin and the
upper edge of the plates. The filling of the castings was
carried out within a 160-keV real-time X-ray radiogra-
phy instrument, to observe the flow pattern of the metal
as it filled the mold.

Fig. 4—Real-time X-ray images showing the morphology of the advancing liquid metal front, in an EPS pattern, when top-gated and poured
under the action of gravity.
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The cast plates were sectioned to obtain eight hori-
zontally oriented tensile test bars from each plate, each
having a gage length of 60 mm and diameter in the gage
length of 10 mm, which were tested using a Losenhausen
Universal Testing Machine at a strain rate of
1 mm min�1. The tensile property results obtained were
normalized against the maximum value of (engineering)
tensile strength in the dataset, and then analyzed using a
Weibull statistical approach, to show how filling of the
mold influenced the distribution of mechanical proper-
ties and the quality of the castings produced.[24] The
two-parameter Weibull equation is shown in Eq. [1]

P ¼ 1� exp � r
r0

� �m� �
: ½1�

In this equation, P is the probability of failure at a
tensile stress of r. The Weibull parameters used to

characterize the material properties are the Weibull
modulus, m, and the scale parameter r0. The Weibull
modulus shows the scatter of properties, with a higher
Weibull modulus indicating a narrower spread of prop-
erties and in this application, a casting operation asso-
ciated with low numbers of defects in the final casting and
greater reproducibility of properties. The scale parameter
r0 is obtained from the intercept of the Weibull plot on
the y-axis, where y ¼ �m ln r0ð Þ; or r0 ¼ exp y=�mð Þ,
and represents the tensile strength below which 63.2 pct
of the samples failed.
Taking the logarithm of equation Eq. [1] twice gives

ln ln
1

1� Pf;n

� �� �
¼ m ln rn �m ln r0: ½2�

The Weibull modulus m is therefore the gradient of a
plot of ln (ln (1/(1 � Pf,n))) against measured tensile

Fig. 5—Real-time X-ray images showing the morphology of the advancing liquid metal front, in an EPS pattern, when bottom-gated and poured
under the action of gravity.
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strength, (ln (rn)), where Pf,n is a measure of the
probability of failure.

B. Countergravity Cast Plates

In a second series of experiments, similar vertically
oriented foamed polystyrene plate patterns were cast,
using a countergravity filling arrangement. In this case,
the foamed patterns had dimensions of
440 9 180 9 10 mm and were mounted in a molding
box placed directly over a cylindrical steel chamber
containing a resistance-heated coil. The mold was fitted
with a steel riser tube of internal diameter 40 mm, which
passed down into the steel chamber and into a crucible
containing an 8 kg melt of 2L99 Al alloy, (Al-7 wt pct
Si-0.3 wt pct Mg). When the liquid metal in the crucible
had reached 1058 K (785 �C), compressed air, within a
pressure range of 24 to 69 kPa, (equivalent to an
overpressure of 0.23 to 0.67 bar), was introduced into
the steel chamber, which forced the liquid metal up the
riser tube and into the mold at varying velocities. Once
the liquid metal had filled the mold, or the liquid metal
had stopped moving, a valve was closed to prevent the
metal from draining back into the crucible during
solidification. These countergravity-filled molds were
also cast in the real-time X-ray instrument so that the
metal–foam interface could be observed during mold
filling, and the velocity with which the plate pattern was
filled could be measured. Figure 2 shows a diagram of
the casting arrangement.

To characterize the properties of the countergravity
cast plates, 23 horizontally oriented tensile test bars were
taken from the plates having dimensions of 60 mm gage
length and 6.7 mm diameter in the gage length. The
tensile properties obtained were again normalized
against the maximum value in the dataset, and a
Weibull analysis was carried out.

C. The Effect of Thermal Degradation of the Polymer
Pattern on the Molecular Weight and Viscosity of the
Liquid Degradation Byproducts

In order to estimate the viscosity of the liquid polymer
degradation byproducts in the liquid metal–foam pat-
tern interface during mold filling, samples of the pattern
material, of mass about 0.1 to 0.2 g, were subjected to
varying amounts of thermal degradation. The polystyr-
ene was placed in the base of copper tubes, (of internal
diameter 21 mm, length 120 mm, and wall thickness 1
mm), and plunged into a melt of liquid Al held at 1053
K (780 �C), to a depth of 70 mm. The temperature at the
base of the copper tubes where the polystyrene samples
sat was monitored using a 0.5-mm diameter Type-K
thermocouple, as shown in Figure 3. The high thermal
conductivity of the copper tube meant that the foam
pattern inside should have experienced a rapid temper-
ature increase, analogous to what would be experienced
in the mold as the liquid metal advanced through the
degrading pattern.
Once the temperature of the thermocouple in the copper

tube reached the required temperature, [up to 873 K
(600 �C)], the tube was then removed from the melt and
quenched in cold water to preserve the degraded pattern
material it contained. The Weight Average molecular
weight of the degraded polymer pattern material was then
measured by Gel Permeation Chromatography, (at
RAPRA, Shrewsbury). The apparent viscosity, (dynamic
viscosity at zero shear), of the polymer in the liquid
metal–pattern interface was then estimated using Eq. [3],
which related the molecular weight and temperature of
liquid polystyrene to its viscosity[25]

log g0 ¼ 3:4 logMþ ½900:2=ðT� 306:4Þ� � 18:38 ½3�

where g0 is the dynamic viscosity at zero shear rate, M is
the molecular weight, and T is the temperature (in K).

Fig. 6—Comparison of Weibull Moduli for the top- and bottom-gated plates cast under the action of gravity.

3142—VOLUME 47A, JUNE 2016 METALLURGICAL AND MATERIALS TRANSACTIONS A



This equation was originally devised for a tempera-
ture range of 448 to 503 K (175 to 230 �C)[25] but was
subsequently shown to be applicable to a polystyrene
melt at up to 703 K (430 �C).[26] The mean temperature
of the interface for which the viscosity was estimated
was assumed to be the mean of the liquid metal and
pattern temperatures, which was about 593 K (320 �C).

III. RESULTS

A. Castings Poured Under the Action of Gravity

The filling of the top-gated plate has been shown in
Figure 4, (with images taken at intervals of about 1 s),
and was associated with lobes of liquid metal advancing
through the pattern, centimeters in size, resulting in the
envelopment of the degrading pattern as the liquid metal
lobes traveled downwards and coalesced. In addition,

the individual lobes themselves showed smaller lobes at
the metal–pattern interface, of a reduced size, (most
clearly seen in Frames 1 and 2). In the bottom-gated
casting, (Figure 5), the liquid metal front advancing
upwards did not show the large lobes apparent in
Figure 4, but did possess the smaller lobes seen in the
top-gated casting. The wavelengths of these minor
interfacial irregularities shown in Figure 5 were about
10 mm and about 2 mm in height.
Figure 6 shows a comparison of the distribution of

tensile strength from the bottom-gated and top-gated
plates. The top-gated arrangement, with its lobed
advancing metal front, was associated with a Weibull
Modulus of about 6, while filling the plate from the
bottom, in which the smaller lobes only were seen, was
associated with a slightly higher Weibull Modulus of
about 9. Both Weibull Moduli values were relatively
low. For example, in an open cavity casting process one

Fig. 7—Real-time X-ray images showing the morphology of the advancing liquid metal front, in an EPS pattern, during countergravity casting,
filled with a chamber overpressure of 69 kPa.
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might expect Weibull Moduli to vary from about 20,
(indicating a relatively poor mold filling process), to
about 40, (indicating a mold filling process that intro-
duced few or no defects).[27] Examples of the types of
defects found in these castings included relatively large
mm-sized porosity, and carbon-rich films that prevented
fusion of the coalescing streams of the liquid metal.

B. Countergravity-Filled Castings

When the liquid metal was drawn up into the mold
from below, the advancing liquid metal front showed a
progressive reduction in the size of the irregularities at
the liquid metal–pattern interface as the overpressure in
the steel chamber was lowered, and the velocity of the
advancing liquid metal was correspondingly reduced.
For example, Figure 7 shows the advancing liquid metal
front (at 2 s intervals) when the chamber overpressure

was 69 kPa, and shows a very irregular metal front with
extensive entrapment of the degrading polymer pattern.
With a reduction of the overpressure in the chamber to
35 kPa, associated with a measured metal front velocity
of about 8 mm s�1, the scale of the irregularity of the
advancing liquid metal front was reduced to about 5 mm
in wavelength and in height, (see Figure 8, images taken
at varying intervals, at up to 10 s). When the overpres-
sure in the chamber was reduced to 28 kPa the
advancing liquid metal front had a lower velocity of
about 5 mm s�1, and appeared planar, as shown in
Figure 9. However, in this case the liquid metal solid-
ified before it filled the mold completely, due to the low
filling velocity.
Figure 10 shows a comparison between the Weibull

Moduli obtained from the different filling conditions
shown in Figure 5, (gravity-poured, bottom-gated), 8,
and 9, (countergravity-filled, at about 8 and 5 mm s�1,

Fig. 8—Real-time X-ray images showing the morphology of the advancing liquid metal front, in an EPS pattern, during countergravity casting,
filled with a chamber overpressure of 35 kPa, resulting in an approximate front velocity of 8 mm s�1.
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respectively). The bottom-filled castings and the coun-
tergravity-filled castings, which in both cases the
real-time X-ray showed to have protrusions on the
liquid metal–pattern interface, had low Weibull Moduli,
of 9 and 11, respectively, while the casting with the
planar advancing liquid metal front had a Weibull
Modulus of 23.

Foamed polystyrene patterns were also cast which
contained a Br additive, used to bring about quicker
breakdown of the polystyrene degradation byproducts
compared to a normal polystyrene pattern material (due
to the Br cleaving molecular bonds).[28] Figure 11 shows
an advancing liquid metal front having a planar mor-
phology, and moving at a velocity of about 5 mm s�1,
similar to the casting shown in Figure 9. In comparison,
Figure 12 shows the morphology of the liquid metal
front as it advanced through the brominated pattern with
a velocity of about 14 mm s�1. Some small perturbations

in the liquid metal front were apparent, on a slightly
larger scale than was observed in the case of the
unbrominated patterns, (compare with Figure 8).
The Weibull Modulus results from the brominated

plates cast in a countergravity fashion with a liquid
metal front velocity of 5 mm s�1, (also resulting in a
planar front), was 26, similar to that obtained with an
unbrominated plate, and gave the highest Weibull
Modulus obtained in these experiments. The Weibull
Modulus results are also summarized in Table I.

C. Molecular Weight Determinations of Degraded
Polystyrene

Gel Permeation Chromatography showed that the
initial (Weight Average) molecular weight of the foamed
polystyrene pattern material was 413,000 g mol�1, while
for the foamed brominated polystyrene pattern material

Fig. 9—Real-time X-ray images showing the morphology of the advancing liquid metal front, in an EPS pattern, during countergravity casting,
filled with a chamber overpressure of 28 kPa, resulting in an approximate front velocity of about 5 mm s�1.
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it was 340,000 g mol�1. Exposure to heat from the
liquid Al melt for around 5 s in the experiment shown in
Figure 3 resulted in a reduction in the molecular weight
of the polystyrene to around 70,000 to 180,000 g mol�1,
(there was probably considerable variation in the heat
received by the polymer sample owing to the simplicity
of the experiment). Similarly, the brominated polystyr-
ene sample experienced a reduction in its molecular
weight to between about 40,000 to 170,000 g mol�1

under the same circumstances.
Applying Eq. [3] to these molecular weight values,

and assuming an interface temperature of around 593 K
(320 �C), suggested dynamic viscosities (at zero shear
rate), for the liquid polystyrene in the liquid metal–foam
pattern interface of between about 14 to 6030 Pas, and
values of between about 2 to 3100 Pas in the case of the
brominated polystyrene. These values were only esti-
mates of the viscosity of the liquid polymer degradation
byproducts and can be interpreted as maximum values,
as higher temperatures in the interface, and the presence
of air and vapor pattern degradation byproducts, would
greatly reduce the overall viscosity of the fluid in the
metal–pattern interface.

IV. DISCUSSION

The real-time X-ray images of the filling of the mold
showed that a non-uniform advancing liquid metal front
was associated with low Weibull Moduli, (with no value
greater than about 11 being obtained), (see Figures 6
and 10). The highest Weibull Modulus, 23, was obtained
when the liquid metal advanced with a planar front (see
Figure 9). A higher Weibull Modulus was also obtained

with brominated polystyrene pattern, exhibiting a pla-
nar advancing liquid metal front, (see Figure 11). In
addition, real-time X-ray radiography failed to show a
gap between the advancing liquid metal and the degrad-
ing pattern, suggesting any such gap should be less than
the dimension of the curvature of the advancing liquid
metal front.
The morphology of the interface in the case of

bottom-gated filling, (such as that seen in Figure 5),
and countergravity filling, (see Figure 8), suggested that
the interface was exhibiting an instability. In the case of
liquid Al, degradation of the polymer pattern is thought
to mostly produce a liquid degradation byproduct, with
the vapor degradation byproduct being much less.[4] The
mold is filled by a liquid metal traveling upwards,
displacing the polystyrene pattern, which at the interface
with the advancing liquid metal has probably degraded
to a liquid consisting of short-chain polymer molecules,
mixed with vapor, perhaps in the form of discrete
bubbles.
The liquid Al alloy would have a density of about

2435 kg m�3,[29] and a dynamic viscosity of about
1 9 10�3 Pas.[29] The properties of the polystyrene
degradation byproducts are more difficult to estimate.
The density of polystyrene foams for patterns is about
20 to 30 kg m�3, and the density of liquid polystyrene,
(without any vapor bubbles present), is about
1000 kg m�3.[30] The density of the mixed liquid and
vapor in the interface should therefore be somewhere
between these values. If a 95 pct collapse of the foam is
assumed,[31] this would give a density of about
50 kg m�3. The viscosity of the liquid polystyrene in
the interface was estimated to be between about 2 to
6000 Pas in the GPC experiments. In the

Fig. 10—Weibull plots of tensile test results from plates filled in a countergravity fashion. The results from the gravity-filled plates are from
three plates cast with ingates at the bottom. The other two results are from single, countergravity-filled plates, filled at different velocities, 8 and
5 mm s�1, respectively.
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countergravity-filled castings, the liquid metal–pattern
interface therefore consisted of a high-density, low-vis-
cosity liquid metal, advancing upwards into the pattern
degradation byproducts, which consisted of a fluid with
lower density, but higher viscosity. These are conditions
that may be appropriate for the occurrence of
Saffman–Taylor Instability.

This was studied by Saffman and Taylor for the case
of flow between two parallel plates.[22] They proposed
that a critical velocity for initiation of Saffman–Taylor
Instability for a moving interface between two fluids
could be estimated from Eq. 4;

V ¼ �g q2 � q1ð Þ
l2
b2
12

�
l1
b2
12

; ½4�

where V is the velocity, g is the acceleration due to
gravity, q is the density, l is the dynamic viscosity, and
b2/12 is the permeability, (where b is the distance
between the two plates). Subscripts 1 and 2 refer to the
lower and upper fluids, respectively, for a case where

fluid 1 is less viscous than fluid 2, and fluid 1 is driven
upwards into fluid 2. In the case of countergravity filling
of the Lost Foam pattern, fluid 1 is then the liquid
metal, and fluid 2 the polymer degradation byproducts.
For an estimated viscosity of the polymer degradation

byproducts, in the case of EPS, of between 2 and
6000 Pas, and for a plate thickness of 10 mm, a critical
velocity for the onset of instability of between about 0.3
and 8 mm s�1, was estimated. For an estimated viscos-
ity of the polymer degradation byproducts of between 2
and 300 Pas, (in the case of brominated EPS), the critical
velocity for onset of the instability was estimated to be
between about 0.4 and 59 mm s�1.
These values were comparable with the advancing

metal front velocity observed by real-time X-ray, where
the onset of instability was found to be between about 5
to 8 mm s�1, in the case of the EPS patterns, and
between about 5 to 14 mm s�1, in the case of the
brominated polystyrene patterns. In both cases, the
velocities lay within the range of velocities estimated to
be associated with the onset of Saffman–Taylor Insta-
bility. (However, these estimates greatly depend on the

Fig. 11—Real-time X-ray images showing the morphology of the advancing liquid metal front during countergravity casting of a brominated
EPS plate pattern, filled with an approximate front velocity of about 5 mm s�1.
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value assumed for viscosity of the polymer degradation
byproducts.)

Other than Saffman–Taylor Instability, filling of Lost
Foam molds may be associated with other hydrody-
namic instabilities, creating other methods of entrap-
ment of the degrading polystyrene pattern and reducing
casting quality. For example, if the mold was poured

from above, high-density liquid metal would descend
through the lower-density fluid associated with the
degrading pattern, and this may lead to Rayleigh–
Taylor Instability.[19,20] If the liquid metal was advanc-
ing from a side-gate, passing horizontally through the
pattern, the interface with the degrading pattern could
lead to a case of Kelvin–Helmholtz Instability, as the

Fig. 12—Real-time X-ray images showing the morphology of the advancing liquid metal front during countergravity casting of a brominated
EPS plate pattern, filled with an approximate front velocity of about 14 mm s�1.

Table I. Summary of Weibull Results from the Casting Experiments

Pattern Material Casting Method Interface Velocity (mm s�1) Weibull Modulus (Tensile Strength) (MPa)

Polystyrene gravity cast (top-gated) not measured 6.2
gravity cast (bottom-gated) 12 9.2
countergravity cast 8 10.7

7 5.1
6 10.1
5 23.2

Brominated polystyrene countergravity cast 5 25.6
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gas in the interface would tend to escape vertically,
parallel to the advancing interface.

To summarize, the presence of a polymer pattern
degrading during casting into a fluid, leads to different
phenomena during mold filling than are known from the
filling of open cavity castings. In particular, it has been
recognized that hydrodynamic instabilities can occur
that could have a great effect on the entrapment of the
degrading polystyrene and the formation of defects such
as porosity and poor fusion of the different metal
streams, due to the presence of carbon-rich films.
Further consideration of the occurrence of hydrody-
namic instabilities in Lost Foam casting could improve
casting quality and the accuracy of simulations of this
casting process.

V. CONCLUSIONS

1. Weibull Modulus estimates suggested that Lost
Foam casting of Al can be associated with reduced
uniformity of properties within a casting.

2. Real-time X-ray examination of the filling of verti-
cally oriented foam pattern plates showed that the
plates with the lowest values ofWeibullModulus and
greater number of defects were associated with a
non-uniform, unstable advancing liquid metal front.

3. Weibull Moduli values, similar to those associated
with open cavity casting were achieved during
countergravity filling of the polystyrene patterns
using low-upward filling velocities.

4. The relative densities and viscosities of the liquid
metal and polymer degradation byproducts at the
liquid metal–pattern interface suggested that the
interface could develop Saffman–Taylor Instability.

5. The velocity associated with the onset of
Saffman–Taylor instability was estimated to be
between about 0.3 to 8 mm s�1, in the case of an
EPS pattern, and between about 0.4 and 59 mm s�1,
in the case of brominated EPS patterns. These
velocities are strongly dependent upon estimated
values of the viscosity of the polymer degradation
byproducts in the liquid metal–pattern interface.

6. The experimentally observed velocities associated
with the transition fromaplanar to anunstable liquid
metal front in the casting ofAl alloyswere found to fit
within the range of possible estimates of the critical
velocity for the onset of Saffman–Taylor Instability.
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