270 research outputs found

    Subpopulations of anti-β2glycoprotein I antibodies with different pathogenic potential: fine specificity against the domains of β2glycoprotein I

    Get PDF
    Objective: Anti-β2glycoprotein I antibodies (a-β2GPI) are a laboratory criterion for the antiphospholipid syndrome (APS) and were demonstrated to be involved in the pathogenesis of APS. However, they can also be detected in asymptomatic subjects. It has been suggested that a-β2GPI against Domain1 (D1) associate with thrombosis, while those recognizing Domain4/5 (D4/5) have been identified in non-thrombotic conditions. We evaluate the specificity of a- β2GPI in different clinical situations. Methods: We studied 39 one-year-old healthy children born to mothers with systemic autoimmune diseases (SAD) (15 (38.4%) were born to mothers who were a-β2GPI positive), 33 children with atopic dermatitis (AD) and 55 patients with APS (50 adults and 5 paediatrics). All subjects were IgG a-β2GPI positive. IgG a-β2GPI were performed by homemade ELISA, while IgG a-β2GPI D1 and D4/5 were tested on research ELISAs containing recombinant β2GPI domains antigens. Results: One-year-old children and AD children displayed preferential reactivity for D4/5; patients with APS recognized preferentially D1. We also found a good correlation between a-β2GPI and D4/5 in one-year-old (r=0.853) and AD children (r=0.879) and between a-β2GPI and D1 in the APS group (r=0.575). No thrombotic events were recorded in both groups of children. Conclusions: A-β2GPI found in non-thrombotic conditions (healthy children born to mothers with SAD and AD children) mostly recognize D4/5, in contrast to the prevalent specificity for D1 in the APS group. The different specificity could at least partially explain the "innocent" profile of a-β2GPI in children

    Lower Critical Dimension of Ising Spin Glasses

    Full text link
    Exact ground states of two-dimensional Ising spin glasses with Gaussian and bimodal (+- J) distributions of the disorder are calculated using a ``matching'' algorithm, which allows large system sizes of up to N=480^2 spins to be investigated. We study domain walls induced by two rather different types of boundary-condition changes, and, in each case, analyze the system-size dependence of an appropriately defined ``defect energy'', which we denote by DE. For Gaussian disorder, we find a power-law behavior DE ~ L^\theta, with \theta=-0.266(2) and \theta=-0.282(2) for the two types of boundary condition changes. These results are in reasonable agreement with each other, allowing for small systematic effects. They also agree well with earlier work on smaller sizes. The negative value indicates that two dimensions is below the lower critical dimension d_c. For the +-J model, we obtain a different result, namely the domain-wall energy saturates at a nonzero value for L\to \infty, so \theta = 0, indicating that the lower critical dimension for the +-J model exactly d_c=2.Comment: 4 pages, 4 figures, 1 table, revte

    Low Energy Excitations in Spin Glasses from Exact Ground States

    Get PDF
    We investigate the nature of the low-energy, large-scale excitations in the three-dimensional Edwards-Anderson Ising spin glass with Gaussian couplings and free boundary conditions, by studying the response of the ground state to a coupling-dependent perturbation introduced previously. The ground states are determined exactly for system sizes up to 12^3 spins using a branch and cut algorithm. The data are consistent with a picture where the surface of the excitations is not space-filling, such as the droplet or the ``TNT'' picture, with only minimal corrections to scaling. When allowing for very large corrections to scaling, the data are also consistent with a picture with space-filling surfaces, such as replica symmetry breaking. The energy of the excitations scales with their size with a small exponent \theta', which is compatible with zero if we allow moderate corrections to scaling. We compare the results with data for periodic boundary conditions obtained with a genetic algorithm, and discuss the effects of different boundary conditions on corrections to scaling. Finally, we analyze the performance of our branch and cut algorithm, finding that it is correlated with the existence of large-scale,low-energy excitations.Comment: 18 Revtex pages, 16 eps figures. Text significantly expanded with more discussion of the numerical data. Fig.11 adde

    Calculation of ground states of four-dimensional +or- J Ising spin glasses

    Full text link
    Ground states of four-dimensional (d=4) EA Ising spin glasses are calculated for sizes up to 7x7x7x7 using a combination of a genetic algorithm and cluster-exact approximation. The ground-state energy of the infinite system is extrapolated as e_0=-2.095(1). The ground-state stiffness (or domain wall) energy D is calculated. A D~L^{\Theta} behavior with \Theta=0.65(4) is found which confirms that the d=4 model has an equilibrium spin-glass-paramagnet transition for non-zero T_c.Comment: 5 pages, 3 figures, 31 references, revtex; update of reference

    Generating droplets in two-dimensional Ising spin glasses by using matching algorithms

    Full text link
    We study the behavior of droplets for two dimensional Ising spin glasses with Gaussian interactions. We use an exact matching algorithm which enables study of systems with linear dimension L up to 240, which is larger than is possible with other approaches. But the method only allows certain classes of droplets to be generated. We study single-bond, cross and a category of fixed volume droplets as well as first excitations. By comparison with similar or equivalent droplets generated in previous works, the advantages but also the limitations of this approach are revealed. In particular we have studied the scaling behavior of the droplet energies and droplet sizes. In most cases, a crossover of the data can be observed such that for large sizes the behavior is compatible with the one-exponent scenario of the droplet theory. Only for the case of first excitations, no clear conclusion can be reached, probably because even with the matching approach the accessible system sizes are still too small.Comment: 11 pages, 16 figures, revte

    Spin glass transition in a magnetic field: a renormalization group study

    Full text link
    We study the transition of short range Ising spin glasses in a magnetic field, within a general replica symmetric field theory, which contains three masses and eight cubic couplings, that is defined in terms of the fields representing the replicon, anomalous and longitudinal modes. We discuss the symmetry of the theory in the limit of replica number n to 0, and consider the regular case where the longitudinal and anomalous masses remain degenerate. The spin glass transitions in zero and non-zero field are analyzed in a common framework. The mean field treatment shows the usual results, that is a transition in zero field, where all the modes become critical, and a transition in non-zero field, at the de Almeida-Thouless (AT) line, with only the replicon mode critical. Renormalization group methods are used to study the critical behavior, to order epsilon = 6-d. In the general theory we find a stable fixed-point associated to the spin glass transition in zero field. This fixed-point becomes unstable in the presence of a small magnetic field, and we calculate crossover exponents, which we relate to zero-field critical exponents. In a finite magnetic field, we find no physical stable fixed-point to describe the AT transition, in agreement with previous results of other authors.Comment: 36 pages with 4 tables. To be published in Phys. Rev.

    The Potts Fully Frustrated model: Thermodynamics, percolation and dynamics in 2 dimensions

    Get PDF
    We consider a Potts model diluted by fully frustrated Ising spins. The model corresponds to a fully frustrated Potts model with variables having an integer absolute value and a sign. This model presents precursor phenomena of a glass transition in the high-temperature region. We show that the onset of these phenomena can be related to a thermodynamic transition. Furthermore this transition can be mapped onto a percolation transition. We numerically study the phase diagram in 2 dimensions (2D) for this model with frustration and {\em without} disorder and we compare it to the phase diagram of i)i) the model with frustration {\em and} disorder and of ii)ii) the ferromagnetic model. Introducing a parameter that connects the three models, we generalize the exact expression of the ferromagnetic Potts transition temperature in 2D to the other cases. Finally, we estimate the dynamic critical exponents related to the Potts order parameter and to the energy.Comment: 10 pages, 10 figures, new result

    The Eigenvalue Analysis of the Density Matrix of 4D Spin Glasses Supports Replica Symmetry Breaking

    Get PDF
    We present a general and powerful numerical method useful to study the density matrix of spin models. We apply the method to finite dimensional spin glasses, and we analyze in detail the four dimensional Edwards-Anderson model with Gaussian quenched random couplings. Our results clearly support the existence of replica symmetry breaking in the thermodynamical limit.Comment: 8 pages, 13 postscript figure

    No spin-glass transition in the "mobile-bond" model

    Full text link
    The recently introduced ``mobile-bond'' model for two-dimensional spin glasses is studied. The model is characterized by an annealing temperature T_q. On the basis of Monte Carlo simulations of small systems it has been claimed that this model exhibits a non-trivial spin-glass transition at finite temperature for small values of T_q. Here the model is studied by means of exact ground-state calculations of large systems up to N=256^2. The scaling of domain-wall energies is investigated as a function of the system size. For small values T_q<0.95 the system behaves like a (gauge-transformed) ferromagnet having a small fraction of frustrated plaquettes. For T_q>=0.95 the system behaves like the standard two-dimensional +-J spin-glass, i.e. it does NOT exhibit a phase transition at T>0.Comment: 4 pages, 5 figures, RevTe

    Absence of a metallic phase in random-bond Ising models in two dimensions: applications to disordered superconductors and paired quantum Hall states

    Full text link
    When the two-dimensional random-bond Ising model is represented as a noninteracting fermion problem, it has the same symmetries as an ensemble of random matrices known as class D. A nonlinear sigma model analysis of the latter in two dimensions has previously led to the prediction of a metallic phase, in which the fermion eigenstates at zero energy are extended. In this paper we argue that such behavior cannot occur in the random-bond Ising model, by showing that the Ising spin correlations in the metallic phase violate the bound on such correlations that results from the reality of the Ising couplings. Some types of disorder in spinless or spin-polarized p-wave superconductors and paired fractional quantum Hall states allow a mapping onto an Ising model with real but correlated bonds, and hence a metallic phase is not possible there either. It is further argued that vortex disorder, which is generic in the fractional quantum Hall applications, destroys the ordered or weak-pairing phase, in which nonabelian statistics is obtained in the pure case.Comment: 13 pages; largely independent of cond-mat/0007254; V. 2: as publishe
    corecore