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We investigate the nature of the low-energy, large-scale excitations in the three-dimensional
Edwards-Anderson Ising spin glass with Gaussian couplings and free boundary conditions, by study-
ing the response of the ground state to a coupling-dependent perturbation introduced previously.
The ground states are determined exactly for system sizes up to 123 spins using a branch and cut
algorithm. The data are consistent with a picture where the surface of the excitations is not space-
�lling, such as the droplet or the \TNT" picture, with only minimal corrections to scaling. When
allowing for very large corrections to scaling, the data are also consistent with a picture with space-
�lling surfaces, such as replica symmetry breaking. The energy of the excitations scales with their
size with a small exponent �0, which is compatible with zero if we allow moderate corrections to
scaling. We compare the results with data for periodic boundary conditions obtained with a genetic
algorithm, and discuss the e�ects of di�erent boundary conditions on corrections to scaling. Finally,
we analyze the performance of our branch and cut algorithm, �nding that it is correlated with the
existence of large-scale, low-energy excitations.

PACS numbers: PACS numbers: 75.50.Lk, 75.40.Mg, 05.50.+q

I. INTRODUCTION

There is still considerable debate about the nature of
the spin glass state in �nite dimensional spin glasses.
Two principal theories have been investigated: the
\droplet theory" proposed by Fisher and Huse1 (see also
Refs. 2,3), and the replica symmetry breaking picture of
Parisi4{6. In the droplet theory the lowest energy exci-
tation of length scale l (a \droplet") has energy of or-
der l� where � is a positive exponent. Furthermore, the
droplets have a surface with fractal dimension, ds, less
than the space dimension d.

Replica symmetry breaking (RSB) is well established
in mean �eld theory, but it remains to be proven in �nite
dimensions. The precise nature of RSB in �nite dimen-
sions is not uniquely de�ned but it is generally agreed
that a key feature of RSB is the existence of excitations
whose energy, unlike that of droplets, remains of order
unity even as their size tends to in�nity. Furthermore,
upon the creation of such a large scale, �nite energy ex-
citation, a �nite fraction of the bonds change state (from
satis�ed to unsatis�ed, or vice-versa) or, equivalently, the
surface of these excitations is space �lling, i.e. ds = d.

Recently, Krzakala and Martin7 (KM), and two of us8

(PY), have argued, on the basis of numerical calculations
at zero temperature, in favor of an intermediate scenario
where there are large scale excitations whose energy does
not increase with size, as in RSB, but which have a sur-
face with ds < d. Following KM we shall denote this
the \TNT" scenario. In the TNT scenario it is necessary
to introduce two exponents which describe the growth

of the energy of an excitation of scale L: (i) � (> 0)
such that L� is the typical change in energy when the
boundary conditions are changed, for example from pe-
riodic to anti-periodic, in a system of size L, and (ii) �0,
which characterizes the energy of clusters excited within
the system for a �xed set of boundary conditions (�0 was
called �g in Ref.7). The TNT picture has been challenged
(although in opposite senses) by Marinari and Parisi9 and
by Middleton10. Subsequently, low temperature Monte
Carlo simulations11 have found results consistent with
the TNT scenario. The RSB, droplet, TNT and some
other scenarios have been also studied by Newman and
Stein12,13. For some recent related work, see Refs. 14,15.

The work of KM and PY determined the ground state
with and without a certain perturbation (which was dif-
ferent in the two cases), designed so that the ground
state of the perturbed system is a large scale excitation
of the original system. They used heuristic algorithms,
i.e. algorithms which are not guaranteed to give the ex-
act ground state, although both KM and PY argue that
they do �nd the exact ground state in most cases.

In this paper, we reconsider the problem of determin-
ing �0 and ds, following the perturbation approach of
PY, described in Section II, but we apply an exact al-
gorithm, known as \branch and cut"16, so we are guar-
anteed that the true ground state is reached every time.
Exact optimization algorithms have been used before for
spin glasses, see e.g. Refs. 17{19, but, to our knowl-
edge, their use in three-dimensions has been restricted to
smaller sizes than studied here, and they were not used
to investigate the real-space structure of the low-energy



excitations.

Our implementation of the branch and cut technique
can handle signi�cantly larger sizes for free boundary
conditions (bc) than for periodic bc20, so we use free
bc here. We consider a di�erent (and enlarged) set of
observables than PY, in the attempt to gain a fuller un-
derstanding of what picture �ts better the whole set of
observables. We also perform a similar analysis of the
data of PY, who used periodic bc, in order to investi-
gate the e�ects of di�erent types of boundary conditions.
The various pictures discussed refer to the large volume
limit, while the sizes that can be currently reached are
rather small. We will therefore pay particular attention
to properly take into account corrections to scaling. In
particular, we will try to determine what values of the
parameters �0 and d� ds �t the data in the more \natu-
ral" way, namely with the smallest corrections to scaling
for the range of sizes considered.

A summary of our results is as follows. We �nd that
for periodic bc, a simple scaling ansatz �ts the results
in a natural way, i.e. with negligible corrections to scal-
ing and no adjustable parameters besides d � ds and �0.
This gives d � ds = 0:42� 0:03; �0 = �0:01� 0:03 (the
meaning of the error bars will be explained later), which
agrees with the results of PY, and is compatible with the
TNT picture. We cannot rule out crossover to either the
droplet or the RSB picture at length scales larger than
our system sizes, but these scenarios, especially the lat-
ter, would require larger corrections to scaling than the
TNT picture.

For free bc, all forms of �tting require some corrections
to scaling. The most natural scenario, in the sense ex-
plained above, gives d�ds = 0:45�0:02; �0 = 0:18�0:03,
with small corrections (of the order of 3%), which is
compatible with the droplet picture. Allowing somewhat
larger corrections (of order 10%), the data are also com-
patible with �0 = 0, namely with the TNT picture. Fi-
nally, if we allow for very large corrections, the data are
also consistent with the RSB picture.

In the second part of the paper, we analyze the perfor-
mance of the branch and cut algorithm. We �nd that
the number of elementary operations required to �nd
the ground state increases exponentially with the size,
as expected since computing a ground state of a three-
dimensional spin glass system is an NP-hard problem21.
We also �nd, interestingly enough, that the CPU time is
larger for samples in which there is an excited state close
in energy to the ground state energy, yet di�erent from
the ground state in the orientation of a large number of
spins. We are not aware of any previous quantitative
measures of this trend, which we expect to be common
to other algorithms as well.

The rest of this paper is organized as follows. In Sec-
tion II we describe the method of perturbing the ground
states to get information about low energy excitations,
introduced by PY. Our results for the nature of the large
scale, low energy excitations are given in Section III. A
short description of the branch and cut algorithm used

is given in Section IV, and the performance of the al-
gorithm is analyzed in Section V. Our conclusions are
summarized in Section VI.

II. GROUND STATE PERTURBATION

METHOD

The Hamiltonian of the spin glass model is given by

H = �
X
hi;ji

JijSiSj ; (1)

where the sites i lie on a simple cubic lattice with N = L3

spins in dimension d = 3, Si = �1, and the Jij are
nearest-neighbor interactions chosen from a Gaussian dis-
tribution with zero mean and standard deviation unity.
Free boundary conditions are applied in all directions.
For a given set of bonds we determine the exact ground

state using a branch and cut algorithm discussed in Sec-

tion IV. Let S
(0)
i be the ground state spin con�guration.

As in PY we then perturb the couplings Jij by an amount

proportional to S
(0)
i S

(0)
j in order to increase the energy

of the ground state relative to the other states and there-
fore possibly induce a change in the ground state. This
perturbation, which depends upon a positive parameter
�, is de�ned by

�H� =
�

Nb

X
hi;ji

S
(0)
i S

(0)
j SiSj ; (2)

where Nb = dLd�1(L� 1) is the number of bonds in the
Hamiltonian. We denote the unperturbed ground state
energy by E(0) and the perturbed energy of the same

state by E
(0)
� . The energy of the unperturbed ground

state will thus increase exactly by an amount �E(0) �
E
(0)
� �E(0) = �: The energy of any other state, � say, will

increase by the lesser amount �E(�) � E
(�)
� � E(�) =

� q
(0;�)
l ; where q

(0;�)
l is the \link overlap" between the

states \0" and �, de�ned by

q
(0;�)
l =

1

Nb

X
hi;ji

S
(0)
i S

(0)
j S

(�)
i S

(�)
j ; (3)

in which the sum is over all the Nb nearest neighbor
bonds. Note that the total energy of the states changes
by an amount of order unity.
As we apply the perturbation, the energy di�erence

between a low energy excited state and the ground state
decreases by the amount

�E(0) ��E(�) = � (1� q
(0;�)
l ): (4)

If there is at least one excited state such that E(�) �
E(0) < �E(0) ��E(�), then one of these excited states
will become the ground state of the perturbed Hamil-
tonian. We denote the new ground state spin con�g-

uration by ~S
(0)
i , and indicate by ql and q, with no in-

dices, the link- and spin-overlap between the new and



old ground states S
(0)
i and ~S

(0)
i , where q is de�ned as

usual by q = 1=N
P

S
(0)
i

~S
(0)
i .

Due to the spin ip symmetry of the Hamiltonian (1),
the ground state is doubly degenerate, and therefore the
distribution of q is symmetric22 around q = 0. Hence, in
the rest of the paper we will restrict ourselves to q � 0
without loss of information.
Consider the probability P (�; L) (with respect to the

random couplings) that q is less than unity, i.e. that

S
(0)
i and ~S

(0)
i di�er in a �nite fraction of the spins. As

discussed by PY, we assume that P (�; L) is dominated

by those samples in which S
(0)
i and ~S

(0)
i di�er by ipping

a single connected cluster of spins, with linear size L.
Deviations from this assumption give rise to corrections
to scaling, as pointed out by Middleton10, and will be
analyzed in Section III. There are two energy scales in
the problem: the typical energy above the ground state
of such an excitation, which scales as L�

0

(�0 = � in the
droplet picture), and the threshold energy of Eq. (4),
which scales as �L�(d�ds) since 1 � ql is proportional to
the surface of the excitation, 1 � ql � L�(d�ds). Hence,
the dimensionless probability P (�; L) is a function of the
ratio of these two energy scales:

P (�; L) = g(�L��) ; (5)

where g(x) is a scaling function and

� � �0 + d� ds : (6)

From this we obtain scaling relations for various observ-
ables. For example, since 1 � q � O(1) and 1 � ql �
L�(d�ds), we obtain8:

h1� qi = Fq(�L
��) (7)

h1� qli = L�(d�ds)Fql(�L
��); (8)

where h� � �i is the average with respect to the random
couplings. By measuring h1� qi and h1� qli we can then
determine d�ds and �0, the two exponents discriminating
the various pictures of the spin glass phase discussed in
Section I.
For small �, we expect the probability that the ground

state changes to be proportional to � (for �xed L), which
implies g(x) � x for x ! 0. Hence Fq(x) and Fql(x)
also vary linearly for small x, and the asymptotic scaling

behavior for L� �1=� is

h1� qi � �L��; (9)

h1� qli � �L��l ; (10)

where

�l � �0 + 2(d� ds) : (11)

In the RSB case, d � ds = �0 = 0, and therefore � =
�l = 0. The scaling relations in Eqs. (7, 8) reduce in this
case to

h1� qi = Fq(�) ; h1� qli = Fql(�) (RSB) ; (12)

and the asymptotic scaling behavior to

h1� qi � �; h1� qli � � (RSB) : (13)

We see that both scaling and asymptotic scaling are in
a sense trivial in RSB since the L dependence disappears.
Nevertheless, we will still use the term scaling.
It is also convenient to analyze just those samples in

which the unperturbed and perturbed ground states are
very di�erent, i.e. where q � qmax, a threshold value.
Denoting such restricted averages by h� � �ic, we have

h1� qlic = L�(d�ds)F c
ql(�L

��): (14)

This is of the same form as in Eq. (8), but, for suÆ-
ciently small qmax, the behavior of the scaling functions
Fql(x) and F c

ql
(x) at small argument will be di�erent for

the following reason. If we average over all samples we
need to include the probability P (�; L) that the pertur-
bation generates an excitation with q < 1. This is pro-
portional to �L�� for �L�� � 1, which is the reason why
Fq(x) � x for small x. However, this factor is automat-
ically taken into account in the selection of the samples
in the restricted average in Eq. (14), and so should not
be included again when performing the average. As a
result, F c

ql(x) tends to a constant for x ! 0, therefore
the asymptotic scaling is

h1� qlic � L�(d�ds): (15)

In particular, in RSB this becomes

h1� qlic � const. (RSB) : (16)

Note that in both cases the asymptotic scaling is inde-
pendent of �.
When analyzing the numerical data, we must be aware

that there are corrections to both (simple) scaling and
asymptotic scaling that occur when L is not large enough.
Corrections to simple scaling take the form of additive

corrections to relations such as Eqs. (5), (7), (8), and
(14), whose amplitude is characterized by a correction-to-
scaling exponent !. For example, including the leading
correction, Eq. (14) becomes

h1� qlic = 1

Ld�ds

�
F c
ql(�L

��) +
1

L!
Gql(�L

��)

�
: (17)

For �L�� ! 0, this gives the correction to asymptotic
scaling corresponding to Eq. (15)

h1� qlic = 1

Ld�ds

�
a+

b

L!

�
: (18)

For the RSB case, this goes over to

h1� qlic = a+
b

L!
; (19)

rather than Eq. (16).



L �=� = 1
4

�=� = 1
2

�=� = 1 �=� = 2 �=� = 4

4 50000 50000 50000 50000 50000

6 20000 20000 20000 20000 20000

8 15000 13467 13467 6000 6000

10 10000 7440 6000 4918 4000

12 5670 4202

TABLE I: Number of independent realizations of the disorder
(samples) used in the computations.

Even when these corrections to (simple) scaling are
negligible and the scaling form, such as Eq. (14), is valid,
the argument of the scaling function may not be suf-
�ciently small for asymptotic scaling to hold. In this
regime, when �tting the data to asymptotic scaling we
have to consider further corrections to (asymptotic) scal-
ing, whose form is obtained by expanding the scaling
function in its argument. For example, the leading cor-
rection to Eq. (15), coming from expanding the F c

ql
in

Eq. (14) to second order, will be

h1� qlic = 1

Ld�ds

�
a+ b

�

L�

�
(20)

which goes over to h1� qlic = a+ b � in RSB. In general,
both types of corrections need to be borne in mind when
�tting the data.

III. RESULTS

We applied the perturbation method described in the
previous Section to systems of size L = 4; 6; 8; 10; and
12. For each size, we considered �ve values of the pertur-
bation strength �, namely �=� = 1

4 ;
1
2 ; 1; 2; and 4, where

� =
p
6 is the mean �eld transition temperature, except

for L = 12 for which only �=� = 1
4 and 1 were considered.

We choose this value of � so we can compare our results
with the results of PY for periodic bc. In order to dis-
criminate between the di�erent pictures, it is important
to have high statistics. Table I reports the number of
samples computed for each size. Note that the number
of samples necessary to achieve a given statistical error
increases as � decreases, since the fraction of samples in
which ~S(0) 6= S(0) decreases.

A. Spin and link overlap

1. Qualitative analysis

We start with a qualitative analysis of the results. In
Fig. 1, we show scatter plots in the (q; ql) plane for L =
4; 10 and �=� = 1

4 ; 1, where each point represents one of
2000 randomly generated samples. Clearly, the link- and
spin-overlap are strongly correlated. We note that, as �

FIG. 1: Scatter plots in the (q; ql) plane for di�erent values
of the size L and perturbation strength �.

decreases, there are less points with small q, and that
as L increases the data shift towards larger values of ql.
Similar plots23 for periodic bc show that ql is signi�cantly
lower than for free bc. While q has a large variance (the
points are distributed along the whole q axis), the link-
overlap has a much smaller variance, which decreases as
L increases, suggesting that in the thermodynamic limit
ql either tends to one or becomes a well de�ned function
of q.
To quantify this, in Fig. 2 we show the standard devi-

ation of ql

� =

q
hq2l ic � hqli2c ; (21)

restricted over samples with q � qmax, as a function of
the system size for �=� = 1. We take qmax = 0:2, since
we are interested in the region of small q, which corre-
sponds to large-scale excitations. A power law � = aL�Æ

�ts well the data with Æ = 0:52 � 0:03 (�2 = 1:80, the
best �t is shown in Fig. 2). Here and in the following,
unless stated otherwise, the error bars on the �t param-
eters are purely statistical in relation to the �tting form
considered25. Restricting the average in Eq. (21) to dif-
ferent intervals of q gives results also compatible with a
power law. A vanishing � in the thermodynamic limit
is consistent with RSB, which predicts that ql is a (non-
trivial) function of q. It is also trivially consistent with
the droplet model or the TNT picture, where ql = 1 for
all q.
We also measured how the standard deviation of q

varies with L, �nding that it varies between 0.28 and
0.32. It can be �tted both to a constant (as expected in



FIG. 2: A plot of the standard deviation of the link-overlap
� = (hq2l ic�hqli2c)1=2, where the average is restricted to sam-
ples such that q � 0:2. The line represents a power law �t
with exponent Æ = 0:52.

RSB) or to a power law with a small exponent around
0.1. However the error bars are very large hence the �ts
are not very informative.
Under the RSB hypothesis, it is interesting to study

the functional relationship between q and ql. In Fig. 3
we show the average value of ql, restricted to intervals
q 2 [qmin; qmax], as a function of the mean value of q
in each interval24 for �=� = 1. For �xed L, a quadratic
form ql = �(L)+�(L) q2, motivated by the in�nite-range
Sherrington-Kirkpatrick model where ql = q2, �ts well
the data for q less than some cut-o� value which increases
with L (see Fig. 3). The quadratic �t works well also for
other values of �, and �(L) and �(L) show a modest
variation with �. We also tried global �ts including data
for all values of q and L, obtaining similar results.
Extrapolating �(L) and �(L) to L ! 1 with �ts of

the form �(L) = �+ b=Lc, �(L) = � + b0=Lc
0

, we obtain

ql = (0:77� 0:02) + (0:27� 0:03) q2 ; (22)

where again the errors are purely statistical for the func-
tional form considered. This nontrivial relation between
q and ql in the thermodynamic limit is consistent with
RSB, while in the droplet or TNT pictures the data in
Fig.3 would shift to ql � 1 in this limit.
The power law form 1� �(L) = b=Lc, �(L) = b0=Lc

0

,
which implies ql = 1 in the large volume limit, �ts poorly
the data if we include all sizes. However, if we exclude
the L = 4 data, the quality of the �t becomes as good
as that of the RSB �t just discussed. Hence, allowing for

FIG. 3: Average of the link-overlap restricted to intervals of q
of width 0.1, as a function of q for di�erent sizes L (from bot-
tom to top, L = 4; 6; 8; 10; 12). The continuous lines represent
quadratic �ts including values of q up to where the lines end.
The dashed lines are a guide to the eye.

small corrections to scaling, the droplet or TNT scenario
are consistent with the data.
This already shows that care must be taken to prop-

erly consider corrections to scaling when comparing the
merits of the �ts to various pictures. In the following,
we will investigate in detail the validity of the various
pictures by considering several observables and explicitly
discussing the corrections to scaling for each picture.

2. Determination of d� ds

We start with the determination of d�ds from various
observables. We will show that for all observables, a wide
range of values of d� ds �ts well the data when allowing
corrections to scaling, but that for all observables the
smallest corrections are attained for a value of d � ds
around 0.44 as in PY.
The main part of Fig. 4 plots h1 � qlic as a function

of L, for various values of � and qmax = 0:4 (qmax = 0:2
gives essentially the same results). First, note that, inde-
pendently of what picture holds in the L!1 limit, the
data deviate signi�cantly from asymptotic scaling, see
Eq. (15), in which the various � values should collapse
on a single curve. Second, the data have a noticeable
positive (upward) curvature for all values of �. In Sec-
tion III C we will show that in the case of periodic bc the
data have a much smaller dependence on � and a much
smaller curvature (see Fig. 12).



In order to determine how the various pictures �t the
data of Fig. 4, we start by considering, following Ref.9,
the following three functional forms:

Form I: h1� qlic = a+ b=Lc

Form II: h1� qlic = a+ b=L+ c=L2 (23)

Form III: h1� qlic = b=Lc

Form I corresponds to the RSB prediction including
the leading correction to scaling, see Eq. (19), with c � !.
Form II is a di�erent parameterization of the corrections
to scaling. Form III corresponds to the asymptotic be-
havior of both the TNT and droplet pictures without cor-
rections to scaling, see Eq. (15), with c � d� ds.
The results of these �ts (performed by �2 minimiza-

tion) are reported in Table II. From the Table we see
that Forms I and II, appropriate to RSB, �t well the
data with a low �2 and a > 0 outside the error bars. The
best �ts with Form I are shown by the dashed lines in
Fig. 4. The variation of a between Forms I and II pro-
vides a measure of the systematic error associated with
the unknown corrections to scaling. Within this error,
a is independent of �, as predicted by RSB. Therefore,
the data for h1� qlic are compatible with RSB, and our
central estimate under the RSB hypothesis is

lim
L!1

h1� qlic = 0:20� 0:02 (RSB) ; (24)

where the error takes into account also the uncertainty in
the form of the corrections to scaling, assuming that the
corrections considered in either Form I or II describe well
the data in the whole range of sizes considered. Marinari
and Parisi9 �tted Form I (resp. II) to their data for peri-
odic boundary conditions, L � 14, and �=� = 4, and ob-
tained a = 0:24 (resp. a = 0:30), from which we estimate
a central value a = 0:27� 0:05. This is just in agreement
with our estimate above for free bc, suggesting that the
in�nite volume limit of h1�qlic, if nonzero, may be inde-
pendent of the boundary conditions, although we do not
have an argument why this should be the case.
The power law Form, III, appropriate to the droplet

model or the TNT scenario, does not �t well the data if
we include all the sizes, but if we exclude L = 4, it does
�t well for �=� < 2, and the �t parameters b and c are
almost independent of �. The quality of the �t of Form
III is worse than that of Forms I and II, but still accept-
able. The main point we want to stress, however, is that
the worse �t of Form III alone does not necessarily favor
the RSB picture, since Form III does not include correc-
tions to scaling, while Forms I and II do. In other words,
Forms I and II are rather \forgiving" with the RSB pic-
ture, allowing corrections of magnitude 100% - 200% of
the predicted L-independent asymptote, while Form III
demands that the power-law scenario �ts with corrections
smaller than the (very small) statistical errors. By look-
ing at Figure 4, it is clear that the data are closer to a
power law than to an L-independent behaviour.
Therefore, in order to try a comparison that puts the

various pictures on an equal footing, we performed �ts

FIG. 4: Logarithmic plot of the average h1 � qlic, restricted
to samples with jqj � 0:4, as a function of the system size
L. Only three values of � are displayed for clarity. The lower
continuous line is the best �t with a power-law, Form III in
Eq. (23) for �=� = 1

4
, where � =

p
6, and the L = 4 data have

been excluded from the �t. The dashed lines are the best �ts
with Form I in Eq. (23). The inset shows a scaling plot of the
data in the main �gure, excluding the L = 4 data, according
to Eq. (14). Here and in the following �gures, note that the
data for various � are correlated, since the samples used for
large � were also used for small �.

with the following more general functional form:

Form IV: Ld�dsh1� qlic = a+ b=Lc (25)

where we �x d� ds and minimize the �2 with respect to
a; b; c, repeating the procedure for di�erent values of d�
ds. For d� ds = 0, Form IV reduces to Form I, while for
d� ds > 0, it corresponds to Form III plus a correction-
to-scaling term, with correction-to-scaling exponent ! =
c. We �nd that, as we might have expected from the
previous discussion, Form IV �ts well the data for a wide
range of values of d � ds. For example, for �=� = 1

4 , a
value of d�ds between 0 and 0.45 gives a goodness-of-�t
parameter Q � 0:43, which is entirely acceptable.
This shows that, when allowing for corrections to scal-

ing for all pictures, the droplet or TNT pictures are as
good as RSB as far as the statistical quality of the �ts
is concerned. However, within the interval of acceptable
values of d � ds, clearly the larger is d � ds the smaller
are the corrections to asymptotic scaling. For example,
for �=� = 1

4 and d� ds = 0:42, the correction term b=Lc

in Form IV amounts to only 0:1% of the total for L = 12,
while for d � ds = 0 it amounts to 43%. Hence a large
value of d�ds may be regarded as more \natural" in this



Form �=� �2 Q a b c

0.25 0.014 0.99 0.171(2) 1.068(5) 0.890(8)

0.5 0.015 0.90 0.185(2) 1.14(1) 0.96(1)

I 1 3.04 0.22 0.201(14) 1.26(7) 1.04(7)

2 0.39 0.52 0.206(6) 1.42(3) 1.08(3)

4 0.27 0.60 0.215(4) 1.73(3) 1.14(2)

0.25 0.037 0.98 0.182(1) 1.29(2) -0.40(5)

0.5 0.010 0.92 0.189(1) 1.23(1) -0.14(3)

II 1 3.01 0.22 0.198(8) 1.16(10) 0.16(27)

2 0.47 0.49 0.199(4) 1.21(5) 0.31(14)

4 0.42 0.52 0.202(3) 1.31(4) 0.64(11)

0.25 1.40 0.49 0.85(2) 0.44(1)

0.5 1.63 0.20 0.87(3) 0.45(2)

III 1 9.81 0.007 0.88(3) 0.44(2)

2 6.75 0.009 0.95(4) 0.47(2)

4 11.4 0.0007 1.09(5) 0.51(2)

0.25 0.55 0.76 0.808(4) 7(8) 3.6(8)

0.5 0.65 0.42 0.811(6) 6(7) 3.2(8)

IV 1 5.91 0.05 0.828(7) 18(37) 4.0(1.5)

2 2.80 0.09 0.844(9) 5(5) 2.9(7)

4 3.01 0.08 0.87(1) 3.8(1.6) 2.3(3)

TABLE II: Fits to h1 � qlic with qmin = 0 and qmax = 0:4.
The four groups of data refer, from top to bottom, to the
three �tting functions I, II, and III in Eq. (23), and Form IV
in Eq. (25) with d� ds = 0:44. For Form III, data for L = 4
was not included in the �t. The errors are the standard errors
of a nonlinear �tting routine25, and Q is the goodness-of-�t
parameter.

range of sizes.
If we impose that the correction to scaling for L � 8

is less than an (arbitrary) limit of 3%, we obtain the
estimate

d� ds = 0:44� 0:03 (26)

where the error is purely statistical within this assump-
tion. In Table II we show the �ts obtained with Form
IV imposing this value. This agrees with the estimate
d� ds = 0:42� 0:02 of PY for periodic bc (see also Sec-
tion III C of this paper), which is reassuring since d� ds
should not depend on the boundary conditions.
Note that for d � ds = 0, corresponding to Form I,

corrections within 3% from the asymptotic limit would
only be attained for a size L ' 200. We also note that,
as we discussed in Section II, even in the regime where
corrections to scaling are negligible, asymptotic scaling
sets in only for L � �1=�. This explains why, if d �
ds ' 0:44, the quality of the power-law �t in Table II
becomes progressively worse as � increases. In particular,
the deviation from asymptotic scaling is very signi�cant
for �=� = 4, and hence from the data of �=� = 4 alone
one should not necessarily conclude9 that an asymptotic
power-law behavior is ruled out. This is seen also in the

inset of Fig. 4, which shows that, if we exclude L = 4,
the data are compatible with the scaling relation Eq. (8),
where the exponent � is independently determined below.
PY determined d�ds from the ratioR = h1�qli=h1�qi

which has the same scaling behavior as the quantity
h1� qlic used here, namely R = L�(d�ds)FR(�=L

�), with
FR(x) � const. as x! 0. Middleton10 observed that, in
two dimensions, small droplets introduce signi�cant cor-
rections to scaling, and suggested that this may be the
case also in three dimensions, possibly invalidating the
conclusions of PY. The quantity h1� qlic is less sensitive
to these corrections since, by restricting to small q, small
droplets should give a smaller contribution, because we
have eliminated the part at large q where one can have
only small droplets. Hence, to investigate these correc-
tions, we �tted our data for R with Forms I-IV above
(with R replacing h1� qlic). The results we �nd are very
similar to those for h1� qlic: Forms I and II �t well the
data with a low �2, giving a = 0:27�0:03 independent of
� within the error bars. A power law �ts well the data if
we exclude L = 4, with an exponent d� ds = 0:43� 0:03
nearly independent of � and in agreement with Eq. (26).
The residual dependence on � is well accounted for by a
scaling plot similar to the inset in Fig. 4. Form IV also �ts
well the data for a wide range of values of d� ds. Again,
a power law is more natural in the sense that corrections
to scaling are smaller, and the smallest corrections are
obtained for d � ds around 0.43 as for h1 � qlic. We in-
terpret the fact that the two quantities give the same
value of d� ds as evidence that corrections due to small
droplets are indeed not important in three dimensions in
this range of sizes. In Section III C we will show that this
is also the case for periodic bc.
To summarize this part, the data for both R and h1�

qlic are compatible with a wide range of values of d� ds
between zero (corresponding to RSB) and ' 0:44, but a
value at the higher end of this range describes the data
in a more natural way, in the sense that the corrections
to scaling are smaller.

3. Determination of �0

Next, we turn to the exponent � de�ned in Eq. (6),
from which we will extract the exponent �0 which is the
other exponent, with d�ds, characterizing the spin glass
phase. To this end we consider the ratio

B =
h1� qli2
h(1� ql)2i (27)

which follows the scaling law

B = FB(�=L
�): (28)

The factor Ld�ds does not appear here since it cancels
between numerator and denumerator of Eq. (27), thus
allowing us to determine � independently of d� ds. Fol-
lowing the arguments in Section II, we expect FB(x) � x



for small x since both Ld�dsh1�qli and L2(d�ds)h(1�ql)2i
vary as �=L� for �=L� ! 0, hence the asymptotic scaling
of B is B � �=L�.
To determine �, we �t the scaling law Eq. (28) to our

data assuming a polynomial form of order n for FB(x),
namely FB(x) =

P
i=0;n ci x

i, with c0 set to zero in order

to satisfy the asymptotic scaling FB(x) � x as x! 0. We
repeat the �t in an interval of values for �, and determine
the value of � which gives the best �t, varying n until
the �2 of the best �t becomes approximately constant.
In this way we obtain

� = 0:63� 0:03; (29)

where the error is purely statistical, under the assump-
tion that the corrections to scaling are smaller than the
statistical errors of the data. As shown in Fig. 5, scal-
ing is quite satisfactory, with all the data collapsing on
one curve, although the data for di�erent � overlap only
slightly. The best �t for n = 6 is displayed by the con-
tinuous line. We emphasize that this scaling plot is ob-
tained with only one adjustable parameter, �. Note that
in the asymptotic scaling regime the data should follow
a straight line (power-law), while the data in the �gure
show a pronounced curvature. Signi�cant corrections to
asymptotic scaling must be expected for large �, since B
must satisfy the inequality B � 1. The dashed line in
Fig. 5 represents the linear term of FB(x), corresponding
to asymptotic scaling, and the deviation from it gives a
measure of the corrections to asymptotic scaling. The
�=� = 1

4 data are quite close to asymptotic scaling, while
the data for large � deviate signi�cantly from it. An-
other manifestation of these corrections is that, if we �t
the data with a power-law B = b=L~�, the e�ective ex-
ponent ~� varies strongly with �, converging towards 0.63
for �! 0.
In RSB, B � � as L ! 1 since � = 0. To test the

RSB prediction, we performed �ts of B using Form I
and Form II in Eq. (23), (where h1 � qlic is replaced by
B). Form I gives unphysical (negative) values of a, while
Form II gives an acceptable �t with a positive a roughly
proportional to �. Therefore, the data for B cannot rule
out RSB. Note that, if RSB holds asymptotically, the
data in Fig.5 would deviate from the scaling curve for
larger L, saturating to a constant value for small values
of �=L�. The good data collapse we observed, therefore,
would be entirely accidental.
We believe that the observed data collapse is a good

indication towards the validity of a scaling scenario with
large �. Certainly this scenario is more natural since
it �ts the data with (almost) no corrections to (simple)
scaling, while the corrections for RSB are very large as
apparent from Fig.5. A similar conclusion was reached
in the determination of d� ds.
As a further test, we can obtain a second estimate

of � from the quantity h1 � qli (q unrestricted), whose
scaling and asymptotic scaling are given in Eqs. (8) and
(10). We �nd results similar to those for B: A power
law �t h1 � qli = b=L ~�l (Form III) gives acceptable �ts

FIG. 5: Scaling plot of the ratio B = h1 � qli2=h(1 � ql)
2i

according to Eq. (28). The continuous line is a polynomial �t
of order n = 6, which gives �2=d.o.f = 1.09, and a goodness-
of-�t parameter Q = 0:35. The dashed line is the linear term
of the polynomial �t, corresponding to the asymptotic scaling
for L!1.

for �=� � 1
2 and for all values of � if we exclude L = 4.

As for B, the e�ective exponent ~�l changes signi�cantly
with �, due to corrections to asymptotic scaling, and by
extrapolating it to � = 0 we obtain �l = 1:15�0:08. This
gives � = �l � (d � ds) = 0:60� 0:09 which agrees with
the estimate � = 0:63� 0:03 obtained from B. We also
veri�ed that, as for B, the data collapse reasonably well
on one curve for � = 0:64 � 0:05 according to Eq. (8),
although the quality of the scaling is somewhat worse
than that of Fig.5. To check the RSB prediction, we
�tted the data to Forms I and II (where now h1 � qlic
is replaced by h1 � qli), �nding that they both �t well
the data, with a roughly proportional to � as expected
in RSB, although, for small �, a is also compatible with
zero. Therefore, as for B, the data are also consistent
with RSB, but this scenario requires large corrections to
scaling, while the hypothesis � = 0:63 �ts the data with
almost no corrections to (simple) scaling.

In the analysis so far, we have determined the expo-
nents � and d�ds using just the link-overlap ql. By con-
trast, PY determined � (for periodic bc) from the scaling
of the spin-overlap q. An advantage of ql is that its vari-
ance is much lower, as shown in Fig. 1. In any event, we
have veri�ed that the scaling relation Eq. (7) �ts well the
data for q, giving � = 0:65� 0:02, in agreement with the
estimates from B and h1� qli.
Summarizing this part, we �nd that the data for all the

quantities considered, namely B, h1�qli, and h1�qi, are



consistent with the RSB prediction that � = 0 asymptot-
ically, but large corrections to scaling are required in the
�t, similarly to what we observed in the determination of
d�ds. The data are also �tted very well by a scaling sce-
nario with � ' 0:63, with almost negligible corrections
to scaling (but with sizeable corrections to asymptotic
scaling, which instead were small for the observables con-
sidered for d � ds). Under the \natural" assumption of
small corrections to scaling, from the estimates of � and
d� ds in Eqs. (29) and (26), we obtain

�0 = �� (d� ds) = 0:19� 0:06; (30)

where, again, the error is purely statistical subject to
the condition of having small (less than 3%) corrections
to scaling. This result agrees with the droplet theory
which predicts that �0 = � > 0, and is compatible with
the value of � ' 0:2 characterizing the energy of domain
walls induced by a change in boundary conditions26. By
contrast, for periodic bc and under the same assumption
of small corrections to scaling, �0 is compatible with zero
(see PY and Section III C). In Section III D we will an-
alyze the origin of this discrepancy, and show that by
allowing small (of order 10%) corrections to scaling the
free bc data can be reconciled with �0 ' 0.

B. Box overlaps

So far we have analyzed the link- and spin-overlap
which are computed on the whole system (bulk). We now
turn to a di�erent observable, the box-overlap de�ned as

qB =
1

LdB

X
i

S
(0)
i

~S
(0)
i (31)

where the sum runs over the sites contained in a central
cubic box of �xed size LB = 2. In the following we will
only consider the absolute value jqB j, which we still call
qB for simplicity. When a large-scale cluster of spins is
ipped, for large L the probability that its surface goes
across the central box is proportional to the ratio of its
surface area, � Lds , to the volume, Ld. Therefore 1 �
qB � L�(d�ds) from which we obtain the scaling laws

h1� qBi = L�(d�ds)FqB (�=L
�) (32)

h1� qBic = L�(d�ds)F c
qB (�=L

�) (33)

where, as for the corresponding scaling functions for ql,
FqB (x) � x and F c

qB (x) � const. for small x. Hence the
asymptotic scaling for L!1 is

h1� qBi � �L��l (34)

h1� qBic � L�(d�ds) : (35)

In RSB, this reduces to h1�qBi � � and h1�qBic � const.
An advantage of qB over ql is that the former, being
measured away from the boundaries, should have smaller
corrections to scaling and be less sensitive to boundary

FIG. 6: Logarithmic plot of the average box-overlap, re-
stricted to samples such that q � 0:4. We show the data
for just two values of � for clarity. The data for other values
of � are superimposed. The lower continuous line is a power-
law �t for �=� = 4. The dashed line is the �t with Form II in
Eq. (23), with qB replacing ql. The slope gives the exponent
d� ds.

conditions. Indeed, Monte Carlo simulations27,28 show
that qB has rather small corrections to scaling. This is
likely to be particularly important for the free boundary
conditions used here.
Fig. 6 shows the restricted average h1 � qBic, with

qmax = 0:4, as a function of L for two values of �. The
data are clearly decreasing with L, are essentially inde-
pendent of �, as expected from Eq. (35), and are close
to a straight line on the logarithmic plot. This indi-
cates that the power law �t, Form III, appropriate to the
droplet and TNT scenarios, should work well and indeed
it does, even for the largest value of � (we note however
that the statistical errors are larger than for the link-
overlap, hence the �ts are less sensitive to corrections to
scaling). The exponent is almost independent of �, vary-
ing between 0.48 and 0.52, and from this we obtain the
estimate

d� ds = 0:48� 0:03 (36)

which is in agreement with the estimates d� ds = 0:44�
0:03 from h1� qlic and d� ds = 0:43� 0:03 from R.
Forms I and II (with qB replacing ql) also �t well the

data, with a between 0.14 and 0.36 (with no discernible
trend with �). Hence the data are also compatible with
RSB, and under the RSB hypothesis, we estimate

lim
L!1

h1� qBic = 0:25� 0:10 (RSB) : (37)



FIG. 7: Logarithmic plot of the average box-overlap, mul-
tiplied by �=� in order to highlight the deviation from the
asymptotic behavior of Eq. (34) in which the data for various
� should collapse on a single curve. The continuous lines rep-
resent �ts with the power-law Form III excluding L = 4. The
dashed lines represent �ts with Form I in Eq. (23).

As usual, we note that the RSB scenario requires rather
large corrections to scaling, while the power law �ts the
data with no corrections.
Fig. 7 shows the unrestricted average h1 � qBi multi-

plied by �=�, which asymptotically should be indepen-
dent of �. The data show a small curvature and a signif-
icant � dependence, indicating that for this quantity we
are not yet in the asymptotic scaling regime (similarly to
what we observed for the quantity B). The data are �t-
ted well by a power law, with an exponent that changes
with � and tends towards � ' 0:63 for �! 0. Fits using
Forms I and II give a compatible with zero. We also de-
termined � from the scaling relation Eq. (32), by �xing
d� ds = 0:44 and using the same �tting procedure as for
B (which assumes no corrections to scaling), �nding

� = 0:62� 0:04 (38)

which agrees with the various estimates of � obtained
from B, h1 � qli, and h1 � qi. Fig. 8 shows the corre-
sponding scaling plot, in which the data collapse is fairly
good.
To conclude this subsection, the data for box overlaps

can be �tted with smaller corrections to scaling than the
data for the bulk link- and spin-overlap. A �t to the
generic scaling picture, with no corrections to scaling,
gives results for the exponents d�ds and � in agreement
with those from the bulk quantities analyzed in the previ-
ous subsections. However, as with the bulk observables,

FIG. 8: Scaling plot of the box-overlap according to Eq. (32).
The continuous line is a polynomial �t of order n = 6, which
gives �2=d.o.f = 0.63, and a goodness-of-�t parameter Q =
0:85. The dashed line is the linear term of the polynomial �t,
corresponding to the asymptotic behavior for L!1.

assuming large corrections to scaling, the data can also
be �tted to the RSB picture.

C. Comparison with periodic boundary conditions

In order to assess the e�ect of di�erent boundary con-
ditions, we have repeated part of the analysis above (with
the exclusion of box-overlaps) for the data of PY (Ref.8)
for periodic boundary conditions and L � 8. The ground
states were obtained using a hybrid genetic algorithm as
described in PY. This does not guarantee to �nd the true
ground state, but the systematic errors due to occasion-
ally missing it are smaller than the statistical errors8.
Figs. 9 and 10 show the equivalent for periodic bc of

Figs. 4 and 5 for free bc. The data in Fig. 9 shows much
less curvature and also a smaller dependence on � than
the corresponding data for free bc in Fig. 4, indicating
that corrections to scaling are smaller for periodic bc.
Table III reports the best �ts using the three functional
forms of Eq. (23). Form I �ts well the data, but a varies
signi�cantly with �, and for small � it is compatible with
zero. Form II also �ts well, with a independent of � within
the statistical errors. From this �t we estimate

lim
L!1

h1� qlic = 0:28� 0:03 (RSB) (39)

(see the comment after Eq.(24) as to the meaning of the
error bar) which agrees with the estimate 0.24 of Mari-



FIG. 9: Same as Fig. 4 but for periodic boundary conditions,
using the data of PY (Ref.8).

nari and Parisi9, and is just consistent with our estimate
0:20� 0:02 for free bc.
The power-law �t with no corrections, Form III, �ts

well the data for the two smallest values of � and, if we
exclude L = 3, for all but the largest value of �. The
exponent c � d� ds is nearly independent of � and gives

d� ds = 0:43� 0:02 (periodic bc) : (40)

This result agrees with the estimate d� ds = 0:42� 0:02
of PY obtained from the ratio R de�ned above, con�rm-
ing that corrections due to small droplets should not be
important in three dimensions, and with our estimate
d � ds = 0:44 � 0:03 for free bc, indicating that d � ds
does not depend on boundary conditions.
We also performed �ts with Form IV which includes

corrections to scaling. As for free bc, a wide range of
values of d� ds from zero to around 0.44 give a good �t,
with the largest values giving the smallest corrections to
scaling. The results of the �t for d�ds = 0:43 are shown
in Table III. For the two smaller values of �, the �ts
are diÆcult because corrections to scaling are very small,
hence they are not shown.
We determined the exponent � from the ratio B using

Eq. (28) and the �tting procedure described for free bc,
obtaining

� = 0:42� 0:03 (periodic bc) (41)

where, as for the estimate of d� ds above, the errors are
purely statistical with the assumption that corrections to
scaling are smaller than the statistical errors of the data.
Scaling is rather satisfactory as shown in Fig. 10. This

FIG. 10: Same as Fig. 5 but for periodic boundary conditions,
using the data of PY (Ref.8).

Form �=� �2 Q a b c

0.25 0.003 0.99 -0.076(7) 1.256(6) 0.384(4)

0.5 0.92 0.62 0.05(4) 1.16(2) 0.47(3)

I 1 1.58 0.45 0.10(3) 1.16(2) 0.52(3)

2 2.20 0.33 0.12(3) 1.18(2) 0.54(4)

4 1.58 0.45 0.20(2) 1.270(4) 0.68(2)

0.25 0.33 0.56 0.279(7) 1.90(5) -1.5(1)

0.5 5.22 0.073 0.28(1) 1.90(9) -1.5(2)

II 1 0.69 0.71 0.280(4) 1.89(3) -1.40(6)

2 0.04 0.98 0.283(1) 1.90(1) -1.33(2)

4 0.36 0.83 0.291(2) 1.86(2) -1.01(4)

0.25 0.02 0.887 1.204(2) 0.433(1)

0.5 0.35 0.838 1.193(3) 0.427(2)

III 1 5.14 0.076 1.21(2) 0.434(6)

2 7.82 0.020 1.24(2) 0.440(8)

4 25.7 2 10�6 1.31(2) 0.46(1)

1 3.59 0.16 1.205(4) 0.3(1.5) 3(4)

IV 2 4.69 0.09 1.214(7) 0.2(5) 2(2)

4 8.38 0.01 1.231(8) 0.7(5) 2.3(7)

TABLE III: Fits to h1 � qlic with qmin = 0 and qmax = 0:4
for periodic boundary conditions. The three groups of data
refer, from top to bottom, to the three �tting functions I, II,
and III in Eq. (23), respectively, and Form IV in Eq. (25)
with d� ds = 0:43.



value agrees with the estimate � = 0:44�0:02 of PY from
the scaling of the spin-overlap but incompatible, within
the statistical error bars, with the result � = 0:63� 0:03
for free bc. We will return in Section III D on the origin
of the discrepancy between free and periodic bc. The
inset of Fig. 9 shows that, with these values of � and
d � ds, the scaling form for h1 � qlic, Eq. (14), is also
well satis�ed. Finally, we veri�ed that, if d � ds = 0:43,
the unrestricted average h1 � qli satis�es scaling, giving
� = 0:45� 0:02 in agreement with the estimate from B.
Combining Eqs. (40) and (41), we obtain the estimate

of �0 for periodic bc:

�0 = �� (d� ds) = �0:01� 0:03 (periodic bc) : (42)

This is compatible with zero and, within the error bars,
incompatible with the value �0 = � ' 0:2, where � char-
acterizes the energy of domain walls induced by bound-
ary condition changes. A scenario in which �0 = 0 and
d�ds > 0 is consistent with the TNT picture. Finally, we
note that, although our analysis of the PY data uses dif-
ferent quantities to extract exponents, our results agree
with those given by PY.

D. Discussion and summary of the results

In the previous sections, we have seen that for both free
and periodic bc, the analysis of all the di�erent observ-
ables considered gives consistent results for the exponents
d � ds and �0 under the assumption of minimal correc-
tions to scaling. However, while the results for d� ds for
free and periodic bc agree with each other, the results
for �0 apparently do not, having found �0 = �0:01� 0:03
for periodic bc and �0 = 0:19 � 0:06 for free bc. Since
�0, like d� ds, should not depend on the type of bound-
ary conditions, the discrepancy must be due to di�erent
corrections to scaling for the two boundary conditions.
Therefore, it is important to analyze further the correc-

tions to scaling. First, we recall that the scaling plots for
the quantity B in Figs. 5 (free bc) and 10 (periodic bc),
from which we have determined � (and hence �0), are
obtained by imposing that the whole data set (namely
all values of � and L) satis�es scaling with corrections to
scaling smaller than the statistical errors, which are less
than 1%. Clearly, this is a very stringent requirement. If
we relax this requirement, allowing some corrections to
(simple) scaling, we can accommodate a larger range of
values for �.
This is shown in Fig. 11, which gives a scaling plot for

free bc, analogous to Fig. 5 but assuming the value � =
0:42 determined from periodic bc. The polynomial �tting
curve was obtained by excluding from the �t the data
points for L = 4 and 6. One can see that for larger L the
data collapse reasonably well on the curve. The deviation
of the L = 4; 6 data from the curve, less than 10%, is a
measure of the corrections to scaling. Therefore, we see
that corrections to scaling of less than 10% for the two

FIG. 11: Scaling plot of the ratio B = h1 � qli2=h(1 � ql)
2i

according to Eq. (28). The continuous line is a polynomial �t
of order n = 5, excluding the data with L = 4 and 6, which
gives �2=d.o.f = 1:26. The dashed line is the linear term of
the polynomial �t, corresponding to the asymptotic scaling
for L!1.

smallest sizes are suÆcient to remove the discrepancy in
the value of �0 between free and periodic bc. We veri�ed
that the also the other quantities considered, namely h1�
qlic, R, h1� qli, h1� qi, can be �tted in a similar way.

We also tried the converse operation, namely a scaling
plot of the data for periodic bc but using the value � =
0:63. We �nd that one can get a relatively good data
collapse excluding the sizes L = 3; 4, and 5, which deviate
from the scaling curve by less than 10%. However, now
the data for a given � approach the scaling curve from
the right side instead of from the left side as in Fig. 11,
but since they have an upward curvature, the correction
to scaling should change curvature twice as L increases,
which is not very plausible. Hence, we believe that it is
more natural to conclude that the correct value of � is
closer to 0.42 than to 0.63, namely that corrections to
scaling are smaller for periodic than for free.

Indeed, in general, it is reasonable to expect that cor-
rections are larger for free bc, because these bc have a free
surface on which lie a fraction of sites which is quite sub-
stantial for moderate sizes. In Fig. 12 we plot together
the h1 � qlic data of Fig. 4 and 9 for free and periodic
bc. The data for free bc lie signi�cantly below those for
periodic bc, indicating that the surface of the excitations
is smaller for free bc. For periodic bc, the domain wall
has to \bend" to return to the same point on the \top
surface" as it had on the \bottom surface". This may be
the source of the extra surface area.



Under the hypothesis d�ds ' 0:44, Fig. 12 then shows
that the corrections to asymptotic scaling are larger for
free bc, since the free bc data show a more marked devi-
ation from the asymptotic �-independent behavior, and
display a larger curvature. This is further indication that
free bc have larger corrections.
Evidence that free bc have larger corrections was also

found recently in Monte Carlo simulations29, where some
evidence was observed that the free bc data might have
a crossover from droplet-like to either TNT- or RSB-like
behavior at large sizes.
Incidentally, note that if RSB is the correct asymptotic

picture and the L!1 limit of h1� qlic is the same for
periodic and free bc, then Fig. 12 would indicate that
the corrections are smaller for free bc (since the data
are closer to their non-zero asymptotic value) which is
not very plausible. Note, however, that we do not have
an argument why in the thermodynamic limit h1 � qlic
should be independent of boundary conditions.

To summarize the �rst part of the article, we have an-
alyzed several quantities for periodic and free bc. For
both types of boundary conditions, all the data are well
described by a general scaling picture involving only two
scaling exponents, d� ds and �0, with only small correc-
tions to scaling. Some observables show signi�cant cor-
rections to asymptotic scaling, which are larger for free
boundary conditions. Fitting this scaling picture to our
data, we obtain comparable values of d� ds for periodic
(0:43� 0:02) and free boundary conditions (0:44� 0:03).
By imposing that corrections to scaling are less than

the statistical errors of 1%, for periodic boundary condi-
tions we obtain �0 ' 0, which �ts well the TNT scenario
(d � ds > 0; �0 = 0), while for free boundary conditions
we obtain �0 = 0:19 � 0:06, which �ts well the droplet
picture (d � ds > 0; �0 > 0). By relaxing this require-
ment and allowing larger corrections to scaling of order
10%, the data for free bc can be also �tted by a sce-
nario with �0 ' 0. Therefore the data for free bc are
also consistent with the TNT picture provided moderate
corrections to scaling are allowed, larger than those for
periodic bc. We have also provided direct evidence that
indeed free bc have larger corrections to scaling.
Data for the box overlap for free boundary conditions

indicates smaller corrections to asymptotic scaling, which
is reasonable since the box is away from the surface, and
are consistent with the scenario described above.
For both free and periodic bc, the data are also �tted

well by the RSB picture (d � ds = 0; �0 = 0), but only
if we allow very large corrections to scaling. In this case,
the good scaling behavior we observed for all the observ-
able considered would only be a �nite size artifact, and
would disappear at larger sizes. To test this possibility,
large system sizes will be needed.
This concludes the �rst part of the paper, dedicated to

the physical results. In the second part, we will describe
the branch and cut algorithm employed, and analyze its
performance in our computations.

FIG. 12: This plot shows together the data of Fig. 4 for free
boundary conditions and Fig. 9 for periodic boundary condi-
tions.

IV. BRANCH AND CUT ALGORITHM

Branch and cut is, to our knowledge, the fastest exact
method for determining ground states of spin glasses in
three dimensions. To apply this technique, we transform
the problem of minimizing the Hamiltonian in Eq.(1) into
a standard combinatorial optimization problem known as
the maximum cut problem. (For a detailed description of
optimization and related topics, see Ref. 30.) Consider
the interaction graphG = (V;E) associated with the spin
glass Hamiltonian, where G contains vertices 1; : : : ; L3 2
V associated with the spin sites and edges (ij) 2 E with
weight cij = �Jij associated with the couplings.

Given a partition of V into two sets, W � V and its
complement V nW , the cut Æ(W ) associated with W is
de�ned as the set of edges with one endpoint, i say, in
W and the other endpoint, j say, in V nW . In formulas,
Æ(W ) = f(ij) 2 E j i 2 W; j 2 V nWg. The weight of
a cut Æ(W ) is de�ned as the sum of the weights of the
cut edges

P
(ij)2Æ(W ) cij . A maximum cut is a cut with

maximum weight among all partitions W . It is easy to
show that minimizing the Hamiltonian Eq.(1) is equiva-
lent to �nding a maximum cut in G, see Ref. 19. If we
know a maximum cut with node partition W and V nW ,
the corresponding ground state spin con�guration can be
read o� by assigning the value up to the spins in W and
down to the spins in V nW , or vice versa.

The branch-and-cut algorithm solves the maximum cut
problem through simultaneous lower and upper bound
computations. By de�nition, the weight of any cut gives a



lower bound on the optimal cut value. Thus, we can start
from any cut and iteratively improve the lower bound us-
ing deterministic heuristic rules (local search and other
specialized heuristics, see Ref.31 for details). How do
we decide when a cut is optimal? This can be done by
additionally maintaining upper bounds on the value of
the maximum cut. Upon iteration of the algorithm, pro-
gressively tighter bounds are found, until optimality is
reached.
Since the availability of upper bounds marks the di�er-

ence between a heuristic and an exact solution, we now
summarize how the upper bound is computed (for more
details, see Ref. 31.) To each edge (ij) we associate a real
variable xij and to each cut Æ(W ) an incidence vector

�Æ(W ) 2 R
E with components �

Æ(W )
ij associated to each

edge (ij), where �
Æ(W )
ij = 1 if (ij) 2 Æ(W ) and �

Æ(W )
ij = 0

otherwise. Denoting by PC(G) the convex hull of the in-
cidence vectors, it can be shown that a basic optimum
solution32 of the linear program

maxf
X

(ij)2E

Jijxij j x 2 PC(G)g: (43)

is a maximum cut. In order to solve (43) with linear
programming techniques we would have to express PC(G)
in the form

PC(G) = fx 2 RE j Ax � b; 0 � x � 1g (44)

for some matrix A and some vector b. Whereas the exis-
tence of A and b are theoretically guaranteed, even sub-
sets of Ax � b known in the literature contain a huge
number of inequalities that render a direct solution of
(43) impractical.
Instead, the branch-and-cut algorithm proceeds by op-

timizing over a superset P containing PC(G), and by it-
eratively tightening P , generating in this way progres-
sively better upper bounds. The supersets P are gener-
ated by a cutting plane approach. Starting with some P ,
we solve the linear program maxfP(ij)2E Jijxij j x 2 Pg
by Dantzig's simplex algorithm32. Optimality is proven
if either of two conditions is satis�ed: (i) the optimal
value equals the lower bound; (ii) the solution vector �x
is the incidence vector of a cut.
If neither is satis�ed, we have to tighten P by solving

the separation problem. This consists in identifying in-
equalities that are valid for all points in PC(G), yet are
violated by �x, or reporting that no such inequality ex-
ists. The inequalities found in this way are added to the
linear programming formulation, obtaining a new tighter
partial system P 0 � P which does not contain �x. The
procedure is then repeated on P 0 and so on.
At some point, it may happen that (i) and (ii) are not

satis�ed, yet the separation routines do not �nd any new
cutting plane. In this case, we branch on some fractional
edge variable xij (i.e. a variable xij 62 f0; 1g), creating
two subproblems in which xij is set to 0 and 1, respec-
tively. We then we apply the cutting plane algorithm
recursively for both subproblems.

V. PERFORMANCE OF THE BRANCH AND

CUT ALGORITHM

In this section we study the performance of our cur-
rent implementation of the branch and cut algorithm, in
particular the dependence of the number of computer op-
erations on system size. The results for size L = 12 were
obtained with a more eÆcient version of the code, so per-
formance for this size cannot be compared with that for
the smaller sizes. Hence, in this section, we shall just
consider sizes up to L = 10.
Finding the ground state of the Hamiltonian Eq. (1)

in three dimensions is an NP-hard problem21, and all
known algorithms to solve this class of problems require
a number of operations that grows exponentially on the
size of the input, in the worst case.

However, depending on the problem, the number of
operations for typical instances (for the spin glass prob-
lem, an instance is a realization of the random couplings,
or sample), can grow considerably more slowly than the
worst case exponential behavior. Furthermore, the num-
ber of operations can vary signi�cantly from one instance
to another. It is therefore useful to investigate experi-
mentally the performance of the algorithm for typical in-
stances, in order to try to extrapolate the computational
resources necessary to go to larger sizes, and possibly to
identify which parameters of the problem a�ect most the
performance. De Simone et al.19 measured the average
CPU time used by the branch and cut algorithm to �nd
the ground state of the two-dimensional �J spin glass
with periodic bc, up to L = 70, showing that the average
CPU time was approximated by a function proportional
to L6.

Here we analyze the performance of the branch and
cut algorithm for the three-dimensional spin glass with
free bc and Gaussian couplings. In order to do this, we
�rst need a good measure of the performance. For a
complex algorithm such as branch and cut, a simple and
absolute measure of the number of operations is not avail-
able. Two possible measures are the CPU time and the
number of linear programs solved during the run of the
algorithm. In Table IV, we summarize the average run-
ning time needed for calculating an unperturbed ground
state for the di�erent system sizes.

The CPU time is not an accurate measure since it de-
pends on the machine architecture and load. Further-
more, our computations were carried out on several dif-
ferent machines, so the CPU time is not useful here. We
take instead the number of linear programs solved, np,
because (i) it is a well-de�ned and machine independent
quantity; (ii) we have observed that about 95% of the
time is spent in solving linear programs; (iii) for a �xed
system size, np correlates strongly, and almost linearly,
with the CPU time. This is shown in Fig. 13, which plots
the CPU time versus np for 1000 randomly generated
samples with L = 10, computed on the same machine.
Note that since the size of the linear programs is also
growing with the system size, the CPU time per linear



FIG. 13: Scatter plot of the CPU time to �nd the unper-
turbed ground state (� = 0) versus the corresponding number
of linear programs solved (np). Each point represents a ran-
domly generated sample with L = 10. All the computations
for this set of samples were run on the same machine. The
dashed line indicates a linear behavior.

.

L mean CPU time per sample

4 0:065

6 0:662

8 10:11

10 338

TABLE IV: Mean CPU time per sample in seconds for the
calculation of the unperturbed ground state, averaged also
over the di�erent machines.

program increases strongly with L: the average (resp.
median) CPU time goes from 0.00770 (resp. 0.833) sec-
onds for L = 4 to 0.833 (resp. 0.784) seconds for L = 10.
Hence, np severely underestimates the rate at which

the number of operations increases with L.
From Fig. 13, we also note that the distribution of

np (and CPU times) is very broad, extending over three
orders of magnitude. The histogram distribution of np
for di�erent system sizes is shown in Fig. 14. In addi-
tion to shifting to larger np, the distribution broadens as
L increases. Also, there is some evidence of a double-
peak structure. For L = 10, we veri�ed that the peak at
smaller np corresponds to samples that could be solved
without branching, while the other peak corresponds to
samples where branching was necessary. Since in each
branching step the number of subproblems to be solved

FIG. 14: Histogram of the number of linear programs solved
by the branch and cut algorithm to �nd the unperturbed
ground state for di�erent system sizes.

doubles, the number of linear programs increases rapidly
and the second peak is at signi�cantly larger np.

In order to identify which parameters of the problem,
in addition to the size, a�ect the performance, we ask
whether np correlates with the physical observables we
measure. No signi�cant correlation was observed with
the ground state energy. Fig. 15 plots33 hlog10 npi for
the unperturbed ground state (� = 0) and L = 10 versus
the overlap between this state and the perturbed ground
state with �=� = 4. We observe a distinct correlation
between np and q: for small q, more linear programs
are needed than for large q. The �gure shows that the
typical number of linear programs is close to an order of
magnitude larger if q ' 0 than if q ' 1. We observed a
similar correlation for other values of � as well, and also
between the CPU time and q. Again, the distribution of
np is quite broad as shown by the data for the standard
deviation of log10 np in Fig. 15.

In order to quantify how the correlation between np
and q changes with the system size, we show in Fig. 16
the average and median of np as a function of Nb, as well
as the conditional averages of np restricted to samples
with large (jqj � 0:9) and small (jqj � 0:1) overlap. We
take the number of bonds, Nb, as a measure of the input
size, since the maximum cut problem is speci�ed in terms
of the edge variables in the graph. From Fig. 16 we see
that, �rst, all measures show an approximately exponen-
tial increase with Nb, with corrections for small Nb, and
second, the di�erence between the conditional averages
with small and large q seems to increase with the system



FIG. 15: The circles are a plot of hlog10 npi, where np is the
number of linear programs solved to compute the unperturbed
ground state S0, versus the overlap between S(0) and the
perturbed ground state ~S(0). The data is for �=� = 4 and
the samples were selected from a set of randomly generated
samples with L = 10, in such a way that the same number
of samples is plotted for each consecutive q interval of length
0.1, in order to sample equally all regions of q. The triangles
show the standard deviation, among samples, of log10 np as a
function of q.

size, and is about one order of magnitude for L = 10.

A qualitative di�erence between samples with small
and large overlap is that samples with a small jqj have a
rougher \energy landscape", namely states with an en-
ergy close to the ground state energy yet a spin con�gura-
tion very di�erent from the ground state. It is then intu-
itively clear why one would observe a correlation between
q and the running time for a stochastic algorithm employ-
ing local search heuristics, such as simulated annealing,
since when the algorithm encounters one of these con�g-
urations with small overlap, it must retrace its steps by
a large amount.

For the branch and cut algorithm, the reason for the
correlation between np and q is less obvious, but some
insight is provided by an analysis of \reduced cost �x-
ing". This is a feature of the branch and cut algorithm
speeding up the computations. In every iteration of the
algorithm, reduced cost �xing gives us a suÆcient condi-
tion to decide which variables (corresponding to the edges
in the graph) have already attained their optimal value.
Therefore, we can �x the variables with \optimal" status
to their current value for all the subsequent iterations of
the algorithm, resulting in less overall computational ef-
fort. The more variables that can be �xed, the faster the

FIG. 16: Average np, median np, and conditional averages
of np restricted to jqj � 0:1 and to jqj � 0:9, as a function
of the number of bonds Nb. The data for np are for L = 10
and � = 0 (unperturbed ground state), and q is the overlap
between the � = 0 and �=� = 4 ground states.

algorithm is in practice.
Since the samples with small overlap have \almost op-

timal" solutions with spin con�gurations very di�erent
from the ground state, a smaller number of variables can
be �xed. Here we do not have the \correct" edge values
available until the end. As an example, we checked that
for L = 10 and � = � , for 100 randomly chosen samples
with small overlap (jqj � 0:1), in average 409� 39 of the
2700 edge variables could be �xed in the �rst sub prob-
lem, i.e. before branching takes place. In contrast, for
100 randomly chosen samples with big overlap (jqj � 0:9),
921�34 of the edge variables could be �xed in the �rst sub
problem, about twice as many. Of course, the less vari-
ables that can be �xed in the �rst sub problem, the more
overall branching is necessary, resulting in more overall
computational e�ort for samples with small overlap.
A consequence of the the broad distribution of the

CPU time and of its correlation with the physical ob-
servables of interest, is that a cuto� in the CPU time
produces a systematic error in these quantities. One has
therefore to ensure that the cuto� is large enough so that
the systematic error is smaller than the statistical error.
It is interesting to try to extrapolate the running time

needed to deal with larger sizes. The average CPU time
in Table IV varies approximately as � exp(�Nb) with �
somewhere between 0.0024 and 0.003. Extrapolating to
L = 14 (Nb = 7644), this gives an average CPU time
of around 108�1 seconds per sample, which is clearly
very demanding. Furthermore, memory limitations will



set in before we can reach this size. Again, note that
np increases much more slowly with Nb. The data for
jqj � 0:1 in Fig.16, for example, vary approximately as
� exp(�Nb) with a smaller � around 0.0017, showing
that the dominant limiting factor is the solution of the
linear programs. Note that the program used for L = 12
is signi�cantly faster than that used in this extrapolation.
This long extrapolated running time gives us further mo-
tivation to continue our research on the improvement of
this algorithm.

VI. CONCLUSIONS

Using an exact \branch and cut" optimization algo-
rithm, we have studied the large-scale, low-energy exci-
tations in the Ising spin glass in three dimensions with
free boundary conditions, and compared the results with
those obtained earlier by PY for periodic boundary con-
ditions.
In the �rst part of the paper, we have discussed in de-

tail how the whole set of observables analyzed is �tted by
a general scaling picture characterized by two exponents,

d � ds and �0, and how the values of these parameters
predicted by the various physical pictures proposed for
the spin glass phase �t our data. Our conclusions have
been summarized at the end of Section III D.
In the second part of the paper, we have analyzed the

performance of the branch and cut algorithm, �nding
that the performance is worse when there is a low energy
excited state close in energy to the ground state but far
away in con�guration space, and have given a quantita-
tive analysis of this e�ect.
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