We study the transition of short range Ising spin glasses in a magnetic
field, within a general replica symmetric field theory, which contains three
masses and eight cubic couplings, that is defined in terms of the fields
representing the replicon, anomalous and longitudinal modes. We discuss the
symmetry of the theory in the limit of replica number n to 0, and consider the
regular case where the longitudinal and anomalous masses remain degenerate.
The spin glass transitions in zero and non-zero field are analyzed in a
common framework. The mean field treatment shows the usual results, that is a
transition in zero field, where all the modes become critical, and a transition
in non-zero field, at the de Almeida-Thouless (AT) line, with only the replicon
mode critical. Renormalization group methods are used to study the critical
behavior, to order epsilon = 6-d. In the general theory we find a stable
fixed-point associated to the spin glass transition in zero field. This
fixed-point becomes unstable in the presence of a small magnetic field, and we
calculate crossover exponents, which we relate to zero-field critical
exponents. In a finite magnetic field, we find no physical stable fixed-point
to describe the AT transition, in agreement with previous results of other
authors.Comment: 36 pages with 4 tables. To be published in Phys. Rev.