We study the behavior of droplets for two dimensional Ising spin glasses with
Gaussian interactions. We use an exact matching algorithm which enables study
of systems with linear dimension L up to 240, which is larger than is possible
with other approaches. But the method only allows certain classes of droplets
to be generated. We study single-bond, cross and a category of fixed volume
droplets as well as first excitations. By comparison with similar or equivalent
droplets generated in previous works, the advantages but also the limitations
of this approach are revealed. In particular we have studied the scaling
behavior of the droplet energies and droplet sizes. In most cases, a crossover
of the data can be observed such that for large sizes the behavior is
compatible with the one-exponent scenario of the droplet theory. Only for the
case of first excitations, no clear conclusion can be reached, probably because
even with the matching approach the accessible system sizes are still too
small.Comment: 11 pages, 16 figures, revte