750 research outputs found

    Continuous Quantum Measurement and the Quantum to Classical Transition

    Get PDF
    While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. {\bf 85}, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes which affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities that describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit. First, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion.Comment: 12 pages, 4 figures, Revtex

    Geospatial analysis and living urban geometry

    Get PDF
    This essay outlines how to incorporate morphological rules within the exigencies of our technological age. We propose using the current evolution of GIS (Geographical Information Systems) technologies beyond their original representational domain, towards predictive and dynamic spatial models that help in constructing the new discipline of "urban seeding". We condemn the high-rise tower block as an unsuitable typology for a living city, and propose to re-establish human-scale urban fabric that resembles the traditional city. Pedestrian presence, density, and movement all reveal that open space between modernist buildings is not urban at all, but neither is the open space found in today's sprawling suburbs. True urban space contains and encourages pedestrian interactions, and has to be designed and built according to specific rules. The opposition between traditional self-organized versus modernist planned cities challenges the very core of the urban planning discipline. Planning has to be re-framed from being a tool creating a fixed future to become a visionary adaptive tool of dynamic states in evolution

    Conductance fluctuations in diffusive rings: Berry phase effects and criteria for adiabaticity

    Full text link
    We study Berry phase effects on conductance properties of diffusive mesoscopic conductors, which are caused by an electron spin moving through an orientationally inhomogeneous magnetic field. Extending previous work, we start with an exact, i.e. not assuming adiabaticity, calculation of the universal conductance fluctuations in a diffusive ring within the weak localization regime, based on a differential equation which we derive for the diffuson in the presence of Zeeman coupling to a magnetic field texture. We calculate the field strength required for adiabaticity and show that this strength is reduced by the diffusive motion. We demonstrate that not only the phases but also the amplitudes of the h/2e Aharonov-Bohm oscillations are strongly affected by the Berry phase. In particular, we show that these amplitudes are completely suppressed at certain magic tilt angles of the external fields, and thereby provide a useful criterion for experimental searches. We also discuss Berry phase-like effects resulting from spin-orbit interaction in diffusive conductors and derive exact formulas for both magnetoconductance and conductance fluctuations. We discuss the power spectra of the magnetoconductance and the conductance fluctuations for inhomogeneous magnetic fields and for spin-orbit interaction.Comment: 18 pages, 13 figures; minor revisions. To appear in Phys. Rev.

    Blood-brain barrier leakage and microvascular lesions in cerebral amyloid angiopathy

    Get PDF
    Background and Purpose-Cerebral amyloid angiopathy (CAA) is a common small vessel disease that independently effects cognition in older individuals. The pathophysiology of CAA and CAA-related bleeding remains poorly understood. In this postmortem study, we explored whether blood-brain barrier leakage is associated with CAA and microvascular lesions.Methods-Eleven CAA cases (median [IQR] age=69 years [65-79 years], 8 males) and 7 cases without neurological disease or brain lesions (median [IQR] age=77 years [68-92 years], 4 males) were analyzed. Cortical sections were sampled from each lobe, and IgG and fibrin extravasation (markers of blood-brain barrier leakage) were assessed with immunohistochemistry. We hypothesized that IgG and fibrin extravasation would be increased in CAA cases compared with controls, that this would be more pronounced in parietooccipital brain regions compared with frontotemporal brain regions in parallel with the posterior predilection of CAA, and would be associated with CAA severity and number of cerebral microbleeds and cerebral microinfarcts counted on ex vivo magnetic resonance imaging of the intact brain hemisphere.Results-Our results demonstrated increased IgG positivity in the frontotemporal (P=0.044) and parietooccipital (P=0.001) cortex in CAA cases compared with controls. Within CAA cases, both fibrin and IgG positivity were increased in parietooccipital brain regions compared with frontotemporal brain regions (P=0.005 and P=0.006, respectively). The percentage of positive vessels for fibrin and IgG was associated with the percentage of amyloid-beta-positive vessels (Spearman.=0.71, P=0.015 and Spearman.=0.73, P=0.011, respectively). Moreover, the percentage of fibrin and IgGpositive vessels, but not amyloid-beta-positive vessels, was associated with the number of cerebral microbleeds on magnetic resonance imaging (Spearman.=0.77, P=0.005 and Spearman.=0.70, P=0.017, respectively). Finally, we observed fibrin deposition in walls of vessels involved in cerebral microbleeds.Conclusions-Our results raise the possibility that blood-brain barrier leakage may be a contributory mechanism for CAArelated brain injury

    A dual point description of mesoscopic superconductors

    Full text link
    We present an analysis of the magnetic response of a mesoscopic superconductor, i.e. a system of sizes comparable to the coherence length and to the London penetration depth. Our approach is based on special properties of the two dimensional Ginzburg-Landau equations, satisfied at the dual point (Îş=12).(\kappa = \frac{1}{\sqrt{2}}). Closed expressions for the free energy and the magnetization of the superconductor are derived. A perturbative analysis in the vicinity of the dual point allows us to take into account vortex interactions, using a new scaling result for the free energy. In order to characterize the vortex/current interactions, we study vortex configurations that are out of thermodynamical equilibrium. Our predictions agree with the results of recent experiments performed on mesoscopic aluminium disks.Comment: revtex, 20 pages, 9 figure

    White matter hyperintensities mediate the association between blood-brain barrier leakage and information processing speed

    Get PDF
    Blood-brain barrier (BBB) leakage is considered an important underlying process in both cerebral small vessel disease (cSVD) and Alzheimer's disease (AD). The objective of this study was to examine associations between BBB leakage, cSVD, neurodegeneration, and cognitive performance across the spectrum from normal cognition to dementia. Leakage was measured with dynamic contrast-enhanced magnetic resonance imaging in 80 older participants (normal cognition, n = 32; mild cognitive impairment, n 34; clinical AD-type dementia, n = 14). Associations between leakage and white matter hyperintensity (WMH) volume, hippocampal volume, and cognition (information processing speed and memory performance) were examined with multivariable linear regression and mediation analyses. Leakage within the gray and white matter was positively associated with WMH volume (gray matter, p = 0.03; white matter, p = 0.01). A negative association was found between white matter BBB leakage and information processing speed performance, which was mediated by WMH volume. Leakage was not associated with hippocampal volume. WMH pathology is suggested to form a link between leakage and decline of information processing speed in older individuals with and without cognitive impairment. (C) 2019 Elsevier Inc. All rights reserved

    The Planetary Nebula Luminosity Function at the Dawn of Gaia

    Full text link
    The [O III] 5007 Planetary Nebula Luminosity Function (PNLF) is an excellent extragalactic standard candle. In theory, the PNLF method should not work at all, since the luminosities of the brightest planetary nebulae (PNe) should be highly sensitive to the age of their host stellar population. Yet the method appears robust, as it consistently produces < 10% distances to galaxies of all Hubble types, from the earliest ellipticals to the latest-type spirals and irregulars. It is therefore uniquely suited for cross-checking the results of other techniques and finding small offsets between the Population I and Population II distance ladders. We review the calibration of the method and show that the zero points provided by Cepheids and the Tip of the Red Giant Branch are in excellent agreement. We then compare the results of the PNLF with those from Surface Brightness Fluctuation measurements, and show that, although both techniques agree in a relative sense, the latter method yields distances that are ~15% larger than those from the PNLF. We trace this discrepancy back to the calibration galaxies and argue that, due to a small systematic error associated with internal reddening, the true distance scale likely falls between the extremes of the two methods. We also demonstrate how PNLF measurements in the early-type galaxies that have hosted Type Ia supernovae can help calibrate the SN Ia maximum magnitude-rate of decline relation. Finally, we discuss how the results from space missions such as Kepler and Gaia can help our understanding of the PNLF phenomenon and improve our knowledge of the physics of local planetary nebulae.Comment: 12 pages, invited review at the conference "The Fundamental Cosmic Distance Scale: State of the Art and Gaia Perspective", to appear in Astrophysics and Space Scienc

    Atomic X-ray Spectroscopy of Accreting Black Holes

    Full text link
    Current astrophysical research suggests that the most persistently luminous objects in the Universe are powered by the flow of matter through accretion disks onto black holes. Accretion disk systems are observed to emit copious radiation across the electromagnetic spectrum, each energy band providing access to rather distinct regimes of physical conditions and geometric scale. X-ray emission probes the innermost regions of the accretion disk, where relativistic effects prevail. While this has been known for decades, it also has been acknowledged that inferring physical conditions in the relativistic regime from the behavior of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope that such emission would more firmly constrain models of disk accretion near black holes, as well as provide observational criteria by which to test general relativity in the strong field limit. Here we provide an introduction to this phenomenon. While the presentation is intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in current research. To achieve these ends, we present the basic applications of general relativity that pertain to X-ray spectroscopic observations of black hole accretion disk systems, focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this we add treatments of the fundamental concepts associated with the theoretical and modeling aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian Journal of Physics, in pres

    Effect of Lanadelumab Compared with Placebo on Prevention of Hereditary Angioedema Attacks : a Randomized Clinical Trial

    Get PDF
    Importance: Current treatments for long-term prophylaxis in hereditary angioedema have limitations. Objective: To assess the efficacy of lanadelumab, a fully human monoclonal antibody that selectively inhibits active plasma kallikrein, in preventing hereditary angioedema attacks. Design, Setting, and Participants: Phase 3, randomized, double-blind, parallel-group, placebo-controlled trial conducted at 41 sites in Canada, Europe, Jordan, and the United States. Patients were randomized between March 3, 2016, and September 9, 2016; last day of follow-up was April 13, 2017. Randomization was 2:1 lanadelumab to placebo; patients assigned to lanadelumab were further randomized 1:1:1 to 1 of the 3 dose regimens. Patients 12 years or older with hereditary angioedema type I or II underwent a 4-week run-in period and those with 1 or more hereditary angioedema attacks during run-in were randomized. Interventions: Twenty-six-week treatment with subcutaneous lanadelumab 150 mg every 4 weeks (n = 28), 300 mg every 4 weeks (n = 29), 300 mg every 2 weeks (n = 27), or placebo (n = 41). All patients received injections every 2 weeks, with those in the every-4-week group receiving placebo in between active treatments. Main Outcome and Measures: Primary efficacy end point was the number of investigator-confirmed attacks of hereditary angioedema over the treatment period. Results: Among 125 patients randomized (mean age, 40.7 years [SD, 14.7 years]; 88 females [70.4%]; 113 white [90.4%]), 113 (90.4%) completed the study. During the run-in period, the mean number of hereditary angioedema attacks per month in the placebo group was 4.0; for the lanadelumab groups, 3.2 for the every-4-week 150-mg group; 3.7 for the every-4-week 300-mg group; and 3.5 for the every-2-week 300-mg group. During the treatment period, the mean number of attacks per month for the placebo group was 1.97; for the lanadelumab groups, 0.48 for the every-4-week 150-mg group; 0.53 for the every-4-week 300-mg group; and 0.26 for the every-2-week 300-mg group. Compared with placebo, the mean differences in the attack rate per month were -1.49 (95% CI, -1.90 to -1.08; P &lt;.001); -1.44 (95% CI, -1.84 to -1.04; P &lt;.001); and -1.71 (95% CI, -2.09 to -1.33; P &lt;.001). The most commonly occurring adverse events with greater frequency in the lanadelumab treatment groups were injection site reactions (34.1% placebo, 52.4% lanadelumab) and dizziness (0% placebo, 6.0% lanadelumab). Conclusions and Relevance: Among patients with hereditary angioedema type I or II, treatment with subcutaneous lanadelumab for 26 weeks significantly reduced the attack rate compared with placebo. These findings support the use of lanadelumab as a prophylactic therapy for hereditary angioedema. Further research is needed to determine long-term safety and efficacy. Trial Registration: EudraCT Identifier: 2015-003943-20; ClinicalTrials.gov Identifier: NCT02586805
    • …
    corecore