6 research outputs found

    Speciation controls on Ni adsorption to birnessite and organo-birnessite

    Get PDF
    Nickel (Ni) is an essential micronutrient for phytoplankton. Its importance to both the modern and ancient Earth system has encouraged development of Ni and its isotopes as biogeochemical tracers. To interpret these signatures however, understanding of how Ni and its isotopes are recorded in marine archives is required. Here we simulate different inorganic and organic Ni species in seawater and investigate their adsorption behaviours to variably crystalline phyllomanganates and organo-mineral phyllomanganate. We conduct pH adsorption edge experiments to determine the binding affinity of the different Ni species to the minerals and then perform desorption experiments to operationally define Ni bonding strength. We also use thermodynamic surface complexation modelling to constrain Ni adsorption mechanisms. From the adsorption edges and stability constants generated from our modelling, the binding affinity increases in the order of Ni-formate+ (aq) NiCl+ (aq) ∼ Ni2+ (aq). For the organo-mineral however, Ni desorption at pH 8 is non quantitative and similar for all three experiments, and is significantly higher compared to the variably crystalline phyllomanganates. Although both our adsorption and desorption experiments were performed over 48 h, it is possible that desorption is somewhat slower than adsorption such that a longer desorption period may result in further Ni loss to solution and thus greater adsorption reversibility. Taken together however, the Ni-formate+ (aq) and Ni organo-birnessite desorption experiments suggest that Ni bonding strength is decreased by the presence of organic carbon, compared to NiCl+ (aq) and Ni2+ (aq). Because bonding strength governs equilibrium stable isotope fractionation, we use our experimental findings to suggest how Ni speciation in seawater might influence Ni isotope behaviour during adsorption to phyllomanganate. We find that our suggestions are consistent with isotopic measurements from natural sediments. Although the balance of Ni adsorption versus incorporation during uptake to phyllomanganates may play a greater part in explaining the variation in the Ni isotope composition in Mn-rich sediments, Ni speciation and the presence of organics might increase the range of δ60Ni values measured in natural settings

    Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes

    Get PDF
    Iron is a scarce but essential micronutrient in the oceans that limits primary productivity in many regions of the surface ocean. The mechanisms and rates of Fe supply to the ocean interior are still poorly understood and quantified. Iron isotope ratios of different Fe pools can potentially be used to trace sources and sinks of the global Fe biogeochemical cycle if these boundary fluxes have distinct signatures. Seafloor hydrothermal vents emit metal rich fluids from mid-ocean ridges into the deep ocean. Iron isotope ratios have the potential to be used to trace the input of hydrothermal dissolved iron to the oceans if the local controls on the fractionation of Fe isotopes during plume dispersal in the deep ocean are understood. In this study we assess the behaviour of Fe isotopes in a Southern Ocean hydrothermal plume using a sampling program of Total Dissolvable Fe (TDFe), and dissolved Fe (dFe). We demonstrate that δ56Fe values of dFe (δ56dFe) within the hydrothermal plume change dramatically during early plume dispersal, ranging from −2.39 ± 0.05‰ to −0.13 ± 0.06‰ (2 SD). The isotopic composition of TDFe (δ56TDFe) was consistently heavier than dFe values, ranging from −0.31 ± 0.03‰ to 0.78 ± 0.05‰, consistent with Fe oxyhydroxide precipitation as the plume samples age. The dFe present in the hydrothermal plume includes stabilised dFe species with potential to be transported to the deep ocean. We estimate that stable dFe exported from the plume will have a δ56Fe of −0.28 ± 0.17‰. Further, we show that the proportion of authigenic iron-sulfide and iron-oxyhydroxide minerals precipitating in the buoyant plume exert opposing controls on the resultant isotope composition of dissolved Fe passed into the neutrally buoyant plume. We show that such controls yield variable dissolved Fe isotope signatures under the authigenic conditions reported from modern vent sites elsewhere, and so ought to be considered during iron isotope reconstructions of past hydrothermalism from ocean sediment records

    Pore-fluid Fe isotopes reflect the extent of benthic Fe redox recycling: evidence from continental shelf and deep-sea sediments

    Get PDF
    Pore-fluid Fe isotopes may be a unique tracer of sediment respiration by dissimilatory Fe reducing bacteria, but to date, pore-fluid Fe isotope measurements have been restricted to continental shelf settings. Here, we present δ56Fe values of pore fluids from two distinct sedimentary settings: (1) a riverine-dominated site on the northern California margin (Eel River shelf; 120 m water depth) and (2) biogenic opal-rich volcaniclastic deep-sea sediments from the Southern Ocean (north and south of the Crozet Plateau; 3000–4000 m water depth). The Fe isotope compositions of Crozet region pore fluids are significantly less fractionated (δ56Fe = +0.12‰ to –0.01‰) than the Eel River shelf (δ56Fe = –0.65‰ to –3.40‰) and previous studies of pore-fluid Fe isotopes, relative to average igneous rocks. Our data represent the first measurements of Fe isotope compositions in pore fluids from deep-sea sediments. A comparison of pore-fluid δ56Fe with the relative abundance of highly labile Fe in the reactive sedimentary Fe pool demonstrates that the composition of Fe isotopes in the pore fluids reflects the different extent of sedimentary Fe redox recycling between these sites

    Impact of atmospheric deposition on N and P geochemistry in the southeastern Levantine basin

    No full text
    Aeolian dust was collected from 2001 to 2003, as part of a longer-term study, to estimate the nutrient input to the Levantine basin from atmospheric deposition. Adsorption experiments, using dust samples from six individual dust storms, showed insignificant adsorption of phosphate onto dry deposited Saharan dust. Thus adsorption onto dust can be discounted as a reason for the high nitrogen:phosphorus (N:P) ratio in the deep water of the eastern basin. A single dust storm sample from the Western Mediterranean was able to adsorb some phosphate from seawater, and it is speculated that this may be linked to the action of acid aerosols on the dust during cloud formation, or to the varying chemical composition in different sources of dust. Dry atmospheric deposition is an important net supplier of both N and P to the eastern basin. Leachable inorganic nitrogen concentrations and fluxes are higher in background (non-storm) samples than in storm samples, probably due to the smaller grain size and aerosol source. Total P is supplied naturally with the dust, as shown by the close correlation between total P and Al (r2=0.95). However, there is a poor correlation between leachable inorganic P (LIP) and Al (r2=0.20), which may be related to grain-size effects and/or recycling processes in the atmosphere. Even so, the supply of LIP to surface waters is greatest during dust storms due to comparatively high deposition of aerosol material. While atmospheric input of P during dust storms does not produce significant in situ increases in chlorophyll, probably due to rapid microbial grazing, it does represent an important proportion of the long-term nutrient input to the basin. This may be increasing as the frequency of dust storms increases

    Iron and manganese diagenesis in deep sea volcanogenic sediments and the origins of pore water colloids

    No full text
    Volcanogenic sediments are typically rich in Fe and Mn-bearing minerals that undergo substantial alteration during early marine diagenesis, however their impact on the global biogeochemical cycling of Fe and Mn has not been widely addressed. This study compares the near surface (0–20 cm below sea floor [cmbsf]) aqueous (<0.02 ?m) and aqueous + colloidal here in after ‘dissolved’ (<0.2 ?m) pore water Fe and Mn distributions, and ancillary O2(aq), NO-3 and solid-phase reactive Fe distributions, between two volcanogenic sediment settings: [1] a deep sea tephra-rich deposit neighbouring the volcanically active island of Montserrat and [2] mixed biosiliceous–volcanogenic sediments from abyssal depths near the volcanically inactive Crozet Islands archipelago. Shallow penetration of O2(aq) into Montserrat sediments was observed (<1 cmbsf), and inferred to partially reflect oxidation of fine grained Fe(II) minerals, whereas penetration of O2(aq) into abyssal Crozet sediments was >5 cmbsf and largely controlled by the oxidation of organic matter. Dissolved Fe and Mn distributions in Montserrat pore waters were lowest in the surface oxic-layer (0.3 ?M Fe; 32 ?M Mn), with maxima (20 ?M Fe; 200 ?M Mn) in the upper 1–15 cmbsf. Unlike Montserrat, Fe and Mn in Crozet pore waters were ubiquitously partitioned between 0.2 ?m and 0.02 ?m filtrations, indicating that the pore water distributions of Fe and Mn in the (traditionally termed) ‘dissolved’ size fraction are dominated by colloids, with respective mean abundances of 80% and 61%. Plausible mechanisms for the origin and composition of pore water colloids are discussed, and include prolonged exposure of Crozet surface sediments to early diagenesis compared to Montserrat, favouring nano-particulate goethite formation, and the elevated dissolved Si concentrations, which are shown to encourage fine-grained smectite formation. In addition, organic matter may stabilise authigenic Fe and Mn in the Crozet pore waters. We conclude that volcanogenic sediment diagenesis leads to a flux of colloidal material to the overlying bottom water, which may impact significantly on deep ocean biogeochemistry. Diffusive flux estimates from Montserrat suggest that diagenesis within tephra deposits of active island volcanism may also be an important source of dissolved Mn to the bottom waters, and therefore a source for the widespread hydrogenous MnOx deposits found in the Caribbean region

    Long-term organic carbon preservation enhanced by iron and manganese

    No full text
    The balance between degradation and preservation of sedimentary organic carbon (OC) is important for global carbon and oxygen cycles1. The relative importance of different mechanisms and environmental conditions contributing to marine sedimentary OC preservation, however, remains unclear2,3,4,5,6,7,8. Simple organic molecules can be geopolymerized into recalcitrant forms by means of the Maillard reaction5, although reaction kinetics at marine sedimentary temperatures are thought to be slow9,10. More recent work in terrestrial systems suggests that the reaction can be catalysed by manganese minerals11,12,13, but the potential for the promotion of geopolymerized OC formation at marine sedimentary temperatures is uncertain. Here we present incubation experiments and find that iron and manganese ions and minerals abiotically catalyse the Maillard reaction by up to two orders of magnitude at temperatures relevant to continental margins where most preservation occurs4. Furthermore, the chemical signature of the reaction products closely resembles dissolved and total OC found in continental margin sediments globally. With the aid of a pore-water model14, we estimate that iron- and manganese-catalysed transformation of simple organic molecules into complex macromolecules might generate on the order of approximately 4.1 Tg C yr−1 for preservation in marine sediments. In the context of perhaps only about 63 Tg C yr−1 variation in sedimentary organic preservation over the past 300 million years6, we propose that variable iron and manganese inputs to the ocean could exert a substantial but hitherto unexplored impact on global OC preservation over geological time
    corecore