201 research outputs found
Differential Calculus on the Quantum Superspace and Deformation of Phase Space
We investigate non-commutative differential calculus on the supersymmetric
version of quantum space where the non-commuting super-coordinates consist of
bosonic as well as fermionic (Grassmann) coordinates. Multi-parametric quantum
deformation of the general linear supergroup, , is studied and the
explicit form for the -matrix, which is the solution of the
Yang-Baxter equation, is presented. We derive the quantum-matrix commutation
relation of and the quantum superdeterminant. We apply these
results for the to the deformed phase-space of supercoordinates and
their momenta, from which we construct the -matrix of q-deformed
orthosymplectic group and calculate its -matrix. Some
detailed argument for quantum super-Clifford algebras and the explict
expression of the -matrix will be presented for the case of
.Comment: 17 pages, KUCP-4
Jordanian Twist Quantization of D=4 Lorentz and Poincare Algebras and D=3 Contraction Limit
We describe in detail two-parameter nonstandard quantum deformation of D=4
Lorentz algebra , linked with Jordanian deformation of
. Using twist quantization technique we obtain
the explicit formulae for the deformed coproducts and antipodes. Further
extending the considered deformation to the D=4 Poincar\'{e} algebra we obtain
a new Hopf-algebraic deformation of four-dimensional relativistic symmetries
with dimensionless deformation parameter. Finally, we interpret
as the D=3 de-Sitter algebra and calculate the contraction
limit ( -- de-Sitter radius) providing explicit Hopf algebra
structure for the quantum deformation of the D=3 Poincar\'{e} algebra (with
masslike deformation parameters), which is the two-parameter light-cone
-deformation of the D=3 Poincar\'{e} symmetry.Comment: 13 pages, no figure
Quantum Deformed Algebra and Superconformal Algebra on Quantum Superspace
We study a deformed algebra on a quantum superspace. Some
interesting aspects of the deformed algebra are shown. As an application of the
deformed algebra we construct a deformed superconformal algebra. {}From the
deformed algebra, we derive deformed Lorentz, translation of
Minkowski space, and its supersymmetric algebras as closed
subalgebras with consistent automorphisms.Comment: 27 pages, KUCP-59, LaTeX fil
Design and Test of a Forward Neutron Calorimeter for the ZEUS Experiment
A lead scintillator sandwich sampling calorimeter has been installed in the
HERA tunnel 105.6 m from the central ZEUS detector in the proton beam
direction. It is designed to measure the energy and scattering angle of
neutrons produced in charge exchange ep collisions. Before installation the
calorimeter was tested and calibrated in the H6 beam at CERN where 120 GeV
electrons, muons, pions and protons were made incident on the calorimeter. In
addition, the spectrum of fast neutrons from charge exchange proton-lucite
collisions was measured. The design and construction of the calorimeter is
described, and the results of the CERN test reported. Special attention is paid
to the measurement of shower position, shower width, and the separation of
electromagnetic showers from hadronic showers. The overall energy scale as
determined from the energy spectrum of charge exchange neutrons is compared to
that obtained from direct beam hadrons.Comment: 45 pages, 22 Encapsulated Postscript figures, submitted to Nuclear
Instruments and Method
Quantum Groups, Gravity, and the Generalized Uncertainty Principle
We investigate the relationship between the generalized uncertainty principle
in quantum gravity and the quantum deformation of the Poincar\'e algebra. We
find that a deformed Newton-Wigner position operator and the generators of
spatial translations and rotations of the deformed Poincar\'e algebra obey a
deformed Heisenberg algebra from which the generalized uncertainty principle
follows. The result indicates that in the -deformed Poincar\'e algebra
a minimal observable length emerges naturally.Comment: 13 pages, IFUP-TH 19/93, May 1993 (revised Nov. 1993
Once again about quantum deformations of D=4 Lorentz algebra: twistings of q-deformation
This paper together with the previous one (arXiv:hep-th/0604146) presents the
detailed description of all quantum deformations of D=4 Lorentz algebra as Hopf
algebra in terms of complex and real generators. We describe here in detail two
quantum deformations of the D=4 Lorentz algebra o(3,1) obtained by twisting of
the standard q-deformation U_{q}(o(3,1)). For the first twisted q-deformation
an Abelian twist depending on Cartan generators of o(3,1) is used. The second
example of twisting provides a quantum deformation of Cremmer-Gervais type for
the Lorentz algebra. For completeness we describe also twisting of the Lorentz
algebra by standard Jordanian twist. By twist quantization techniques we obtain
for these deformations new explicit formulae for the deformed coproducts and
antipodes of the o(3,1)-generators.Comment: 17 page
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Observation of Scaling Violations in Scaled Momentum Distributions at HERA
Charged particle production has been measured in deep inelastic scattering
(DIS) events over a large range of and using the ZEUS detector. The
evolution of the scaled momentum, , with in the range 10 to 1280
, has been investigated in the current fragmentation region of the Breit
frame. The results show clear evidence, in a single experiment, for scaling
violations in scaled momenta as a function of .Comment: 21 pages including 4 figures, to be published in Physics Letters B.
Two references adde
Forward jet production in deep inelastic ep scattering and low-x parton dynamics at HERA
Differential inclusive jet cross sections in neutral current deep inelastic
ep scattering have been measured with the ZEUS detector. Three phase-space
regions have been selected in order to study parton dynamics where the effects
of BFKL evolution might be present. The measurements have been compared to the
predictions of leading-logarithm parton shower Monte Carlo models and
fixed-order perturbative QCD calculations. In the forward region, QCD
calculations at order alpha_s^1 underestimate the data up to an order of
magnitude at low x. An improved description of the data in this region is
obtained by including QCD corrections at order alpha_s^2, which account for the
lowest-order t-channel gluon-exchange diagrams, highlighting the importance of
such terms in parton dynamics at low x.Comment: 25 pages, 4 figure
CP Violation in
We consider CP violating effects in the decays where both the resonance, , and
resonance, , can contribute. The interference
between the and resonances can lead to enhanced CP-violating
asymmetries whose magnitudes depend crucially on the decay
constant, . We make an estimate of with a
simplified chiral Lagrangian coupled to a massive pseudoscalar field, and we
compare the estimates from the non-relativistic quark model and from the QCD
sum rule with the estimate from the `mock' meson model. We then estimate
quantitatively the size of CP-violating effects in a multi-Higgs-doublet model
and scalar-leptoquark models. We find that, while CP-violating effects in the
scalar-leptoquark models may require more than leptons,
CP-violating effects from the multi-Higgs-doublet model can be seen at the
level with about leptons using the chiral Lagrangian
estimate of GeV.Comment: Latex, 30 pages, 2 figures (not included). Three compressed
postscript files of the paper available at
ftp://ftp.kek.jp/kek/preprints/TH/TH-419/kekth419.ps.gz, Tau1.ps.gz,
Tau2.ps.g
- …
