201 research outputs found

    Differential Calculus on the Quantum Superspace and Deformation of Phase Space

    Full text link
    We investigate non-commutative differential calculus on the supersymmetric version of quantum space where the non-commuting super-coordinates consist of bosonic as well as fermionic (Grassmann) coordinates. Multi-parametric quantum deformation of the general linear supergroup, GLq(mn)GL_q(m|n), is studied and the explicit form for the R^{\hat R}-matrix, which is the solution of the Yang-Baxter equation, is presented. We derive the quantum-matrix commutation relation of GLq(mn)GL_q(m|n) and the quantum superdeterminant. We apply these results for the GLq(mn)GL_q(m|n) to the deformed phase-space of supercoordinates and their momenta, from which we construct the R^{\hat R}-matrix of q-deformed orthosymplectic group OSpq(2n2m)OSp_q(2n|2m) and calculate its R^{\hat R}-matrix. Some detailed argument for quantum super-Clifford algebras and the explict expression of the R^{\hat R}-matrix will be presented for the case of OSpq(22)OSp_q(2|2).Comment: 17 pages, KUCP-4

    Jordanian Twist Quantization of D=4 Lorentz and Poincare Algebras and D=3 Contraction Limit

    Get PDF
    We describe in detail two-parameter nonstandard quantum deformation of D=4 Lorentz algebra o(3,1)\mathfrak{o}(3,1), linked with Jordanian deformation of sl(2;C)\mathfrak{sl} (2;\mathbb{C}). Using twist quantization technique we obtain the explicit formulae for the deformed coproducts and antipodes. Further extending the considered deformation to the D=4 Poincar\'{e} algebra we obtain a new Hopf-algebraic deformation of four-dimensional relativistic symmetries with dimensionless deformation parameter. Finally, we interpret o(3,1)\mathfrak{o}(3,1) as the D=3 de-Sitter algebra and calculate the contraction limit RR\to\infty (RR -- de-Sitter radius) providing explicit Hopf algebra structure for the quantum deformation of the D=3 Poincar\'{e} algebra (with masslike deformation parameters), which is the two-parameter light-cone κ\kappa-deformation of the D=3 Poincar\'{e} symmetry.Comment: 13 pages, no figure

    Quantum Deformed su(mn)su(m|n) Algebra and Superconformal Algebra on Quantum Superspace

    Full text link
    We study a deformed su(mn)su(m|n) algebra on a quantum superspace. Some interesting aspects of the deformed algebra are shown. As an application of the deformed algebra we construct a deformed superconformal algebra. {}From the deformed su(14)su(1|4) algebra, we derive deformed Lorentz, translation of Minkowski space, iso(2,2)iso(2,2) and its supersymmetric algebras as closed subalgebras with consistent automorphisms.Comment: 27 pages, KUCP-59, LaTeX fil

    Design and Test of a Forward Neutron Calorimeter for the ZEUS Experiment

    Get PDF
    A lead scintillator sandwich sampling calorimeter has been installed in the HERA tunnel 105.6 m from the central ZEUS detector in the proton beam direction. It is designed to measure the energy and scattering angle of neutrons produced in charge exchange ep collisions. Before installation the calorimeter was tested and calibrated in the H6 beam at CERN where 120 GeV electrons, muons, pions and protons were made incident on the calorimeter. In addition, the spectrum of fast neutrons from charge exchange proton-lucite collisions was measured. The design and construction of the calorimeter is described, and the results of the CERN test reported. Special attention is paid to the measurement of shower position, shower width, and the separation of electromagnetic showers from hadronic showers. The overall energy scale as determined from the energy spectrum of charge exchange neutrons is compared to that obtained from direct beam hadrons.Comment: 45 pages, 22 Encapsulated Postscript figures, submitted to Nuclear Instruments and Method

    Quantum Groups, Gravity, and the Generalized Uncertainty Principle

    Get PDF
    We investigate the relationship between the generalized uncertainty principle in quantum gravity and the quantum deformation of the Poincar\'e algebra. We find that a deformed Newton-Wigner position operator and the generators of spatial translations and rotations of the deformed Poincar\'e algebra obey a deformed Heisenberg algebra from which the generalized uncertainty principle follows. The result indicates that in the κ\kappa-deformed Poincar\'e algebra a minimal observable length emerges naturally.Comment: 13 pages, IFUP-TH 19/93, May 1993 (revised Nov. 1993

    Once again about quantum deformations of D=4 Lorentz algebra: twistings of q-deformation

    Full text link
    This paper together with the previous one (arXiv:hep-th/0604146) presents the detailed description of all quantum deformations of D=4 Lorentz algebra as Hopf algebra in terms of complex and real generators. We describe here in detail two quantum deformations of the D=4 Lorentz algebra o(3,1) obtained by twisting of the standard q-deformation U_{q}(o(3,1)). For the first twisted q-deformation an Abelian twist depending on Cartan generators of o(3,1) is used. The second example of twisting provides a quantum deformation of Cremmer-Gervais type for the Lorentz algebra. For completeness we describe also twisting of the Lorentz algebra by standard Jordanian twist. By twist quantization techniques we obtain for these deformations new explicit formulae for the deformed coproducts and antipodes of the o(3,1)-generators.Comment: 17 page

    D* Production in Deep Inelastic Scattering at HERA

    Get PDF
    This paper presents measurements of D^{*\pm} production in deep inelastic scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The data have been taken with the ZEUS detector at HERA. The decay channel D+(D0Kπ+)π+D^{*+}\to (D^0 \to K^- \pi^+) \pi^+ (+ c.c.) has been used in the study. The e+pe^+p cross section for inclusive D^{*\pm} production with 5<Q2<100GeV25<Q^2<100 GeV^2 and y<0.7y<0.7 is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region {1.3<pT(D±)<9.01.3<p_T(D^{*\pm})<9.0 GeV and η(D±)<1.5| \eta(D^{*\pm}) |<1.5}. Differential cross sections as functions of p_T(D^{*\pm}), η(D±),W\eta(D^{*\pm}), W and Q2Q^2 are compared with next-to-leading order QCD calculations based on the photon-gluon fusion production mechanism. After an extrapolation of the cross section to the full kinematic region in p_T(D^{*\pm}) and η\eta(D^{*\pm}), the charm contribution F2ccˉ(x,Q2)F_2^{c\bar{c}}(x,Q^2) to the proton structure function is determined for Bjorken xx between 2 \cdot 104^{-4} and 5 \cdot 103^{-3}.Comment: 17 pages including 4 figure

    Observation of Scaling Violations in Scaled Momentum Distributions at HERA

    Get PDF
    Charged particle production has been measured in deep inelastic scattering (DIS) events over a large range of xx and Q2Q^2 using the ZEUS detector. The evolution of the scaled momentum, xpx_p, with Q2,Q^2, in the range 10 to 1280 GeV2GeV^2, has been investigated in the current fragmentation region of the Breit frame. The results show clear evidence, in a single experiment, for scaling violations in scaled momenta as a function of Q2Q^2.Comment: 21 pages including 4 figures, to be published in Physics Letters B. Two references adde

    Forward jet production in deep inelastic ep scattering and low-x parton dynamics at HERA

    Get PDF
    Differential inclusive jet cross sections in neutral current deep inelastic ep scattering have been measured with the ZEUS detector. Three phase-space regions have been selected in order to study parton dynamics where the effects of BFKL evolution might be present. The measurements have been compared to the predictions of leading-logarithm parton shower Monte Carlo models and fixed-order perturbative QCD calculations. In the forward region, QCD calculations at order alpha_s^1 underestimate the data up to an order of magnitude at low x. An improved description of the data in this region is obtained by including QCD corrections at order alpha_s^2, which account for the lowest-order t-channel gluon-exchange diagrams, highlighting the importance of such terms in parton dynamics at low x.Comment: 25 pages, 4 figure

    CP Violation in τ3πντ\tau\rightarrow 3\pi\nu_\tau

    Full text link
    We consider CP violating effects in the decays τ(3π)ντ\tau\rightarrow (3\pi)\nu_\tau where both the JP=1+{\rm J}^{\rm P}=1^+ resonance, a1a_1, and JP=0{\rm J}^{\rm P}=0^- resonance, π\pi^\prime, can contribute. The interference between the a1a_1 and π\pi^\prime resonances can lead to enhanced CP-violating asymmetries whose magnitudes depend crucially on the π\pi^\prime decay constant, fπf_{\pi^\prime}. We make an estimate of fπf_{\pi^\prime} with a simplified chiral Lagrangian coupled to a massive pseudoscalar field, and we compare the estimates from the non-relativistic quark model and from the QCD sum rule with the estimate from the `mock' meson model. We then estimate quantitatively the size of CP-violating effects in a multi-Higgs-doublet model and scalar-leptoquark models. We find that, while CP-violating effects in the scalar-leptoquark models may require more than 101010^{10} τ\tau leptons, CP-violating effects from the multi-Higgs-doublet model can be seen at the 2σ2\sigma level with about 10710^7 τ\tau leptons using the chiral Lagrangian estimate of fπ=(15)×103f_{\pi^\prime}=(1\sim 5)\times 10^{-3} GeV.Comment: Latex, 30 pages, 2 figures (not included). Three compressed postscript files of the paper available at ftp://ftp.kek.jp/kek/preprints/TH/TH-419/kekth419.ps.gz, Tau1.ps.gz, Tau2.ps.g
    corecore