635 research outputs found
Asbestos and Inconel combined to form hot-gas seal
Hot-gas seal prevents warpage tendencies in large flange joints exposed to high temperatures, such as those present in large space vehicle engine exhausts. Two Inconel wire mesh cores are held in place by an asbestos cloth cover that acts as a spacer to form the seal
The estimation Oof dissolved phosphate in sea water
The molybdenum-blue method of determining dissolved inorganic phosphorus in sea water was modified for use with a photoelectric colorimeter. The effect of reagent concentration, time, and temperature on the rate and extent of color development was studied. Practical suggestions are given for carrying out routine analyses at sea
Equity Commitment under Uncertainty: A Hierarchical Model of Real Option Entry Mode Choices
We develop a real option hierarchical model of entry mode choice and test predictions using a sample of US companies in Latin America and the Caribbean between 1980 and 2005. Probit results indicate that the choice between a real option non-equity mode and equity commitment is influenced by previous acquisition experience, R&D and advertising intensities, and country risk. The choice of the more flexible real option JV mode over WOEs is positively related to greater firm size and market-to-book ratio in countries with better infrastructure. In contrast, greater marketing intensity and lower country risk encourage WOEs
Equity Commitment under Uncertainty: A Hierarchical Model of Real Option Entry Mode Choices
We develop a real option hierarchical model of entry mode choice and test predictions using a sample of US companies in Latin America and the Caribbean between 1980 and 2005. Probit results indicate that the choice between a real option non-equity mode and equity commitment is influenced by previous acquisition experience, R&D and advertising intensities, and country risk. The choice of the more flexible real option JV mode over WOEs is positively related to greater firm size and market-to-book ratio in countries with better infrastructure. In contrast, greater marketing intensity and lower country risk encourage WOEs
Fluxes and distribution of dissolved iron in the eastern (sub-) tropical North Atlantic Ocean
Aeolian dust transport from the Saharan/Sahel desert regions is considered the dominant external input of iron (Fe) to the surface waters of the eastern (sub-) tropical North Atlantic Ocean. To test this hypothesis, we investigated the sources of dissolved Fe (DFe) and quantified DFe fluxes to the surface ocean in this region. In winter 2008, surface water DFe concentrations varied between <0.1 nM and 0.37 nM, with an average of 0.13 Ā± 0.07 nM DFe (n = 194). A strong correlation between mixed layer averaged concentrations of dissolved aluminum (DAl), a proxy for dust input, and DFe indicated dust as a source of DFe to the surface ocean. The importance of Aeolian nutrient input was further confirmed by an increase of 0.1 nM DFe and 0.05 ?M phosphate during a repeat transect before and after a dust event. An exponential decrease of DFe with increasing distance from the African continent, suggested that continental shelf waters were a source of DFe to the northern part of our study area. Relatively high Fe:C ratios of up to 3 Ć 10?5 (C derived from apparent oxygen utilization (AOU)) indicated an external source of Fe to these African continental shelf waters. Below the wind mixed layer along 12Ā°N, enhanced DFe concentrations (>1.5 nM) correlated positively with apparent oxygen utilization (AOU) and showed the importance of organic matter remineralization as an DFe source. As a consequence, vertical diffusive mixing formed an important Fe flux to the surface ocean in this region, even surpassing that of a major dust event
New fire diurnal cycle characterizations to improve fire radiative energy assessments made from low-Earth orbit satellites sampling
Accurate near real time fire emissions estimates are required for
air quality forecasts. To date, most approaches are based on
satellite-derived estimates of fire radiative power (FRP), which can
be converted to fire radiative energy (FRE) which is directly
related to fire emissions. Uncertainties in these FRE estimations
are often substantial. This is for a large part because the most
often used low-Earth orbit satellite-based instruments like the
MODerate-resolution Imaging Spectroradiometer (MODIS) have
a relatively poor sampling of the usually pronounced fire diurnal
cycle. In this paper we explore the spatial variation of this fire
diurnal cycle and its drivers. Specifically, we assess how
representing the fire diurnal cycle affects FRP and FRE estimations
when using data collected at MODIS overpasses. Using data
assimilation we explored three different methods to estimate hourly
FRE, based on an incremental sophistication of parameterizing the
fire diurnal cycle. We sampled data from the geostationary Meteosat
Spinning Enhanced Visible and Infrared Imager (SEVIRI) at MODIS
detection opportunities to drive the three approaches. The full
SEVIRI time-series, providing full coverage of the diurnal cycle,
were used to evaluate the results. Our study period comprised three
years (2010ā2012), and we focussed on Africa and the Mediterranean
basin to avoid the use of potentially lower quality SEVIRI data
obtained at very far off-nadir view angles. We found that the fire
diurnal cycle varies substantially over the study region, and
depends on both fuel and weather conditions. For example, more
"intense" fires characterized by a fire diurnal cycle with high
peak fire activity, long duration over the day, and with nighttime
fire activity are most common in areas of large fire size (i.e.,
large burned area per fire event). These areas are most prevalent in
relatively arid regions. Ignoring the fire diurnal cycle as done
currently in some approaches caused structural errors, while
generally overestimating FRE. Including information on the
climatology of the fire diurnal cycle provided the most promising avenue
to improve FRE estimations. This approach also improved the
performance on relatively high spatiotemporal resolutions, although
only when aggregating model results to coarser spatial and/or
temporal scale good correlation was found with the full SEVIRI
hourly reference dataset. In general model performance was best in
areas of frequent fire and low errors of omission. We recommend the use
of regionally varying fire diurnal cycle information within the
Global Fire Assimilation System (GFAS) used in the Copernicus
Atmosphere Monitoring Services, which will improve FRE estimates and
may allow for further reconciliation of biomass burning emission
estimates from different inventories
Alternate bar response to sediment supply termination
Sediment supply is widely held to be one of the primary controls on bar topography in alluvial channels, yet quantitative linkages between sediment supply and bar topography are not well developed. We explore the conditions under which alternate bars form and how they respond to the elimination of sediment supply in two linked laboratory experiments. The first set of experiments was conducted in a 28 m long, 0.86 m wide flume channel using a unimodal sandāgravel mix. The second set of experiments was conducted at field scale in a 55 m long, 2.74 m wide channel using a unimodal gravel mixture. In both experiments, alternate bars and patchy surface graināsize distributions developed under steady flow and sediment supply conditions. The cessation of the sediment supply induced a reduction in the surface graināsize heterogeneity and the bars were eliminated. In both flumes, mean boundary shear stress had declined, but were capable of moving sediments after the bars disappeared, albeit at relatively small rates compared to when the bars were present. In the smaller flume, the previously stationary bars migrated out of the flume and were not replaced with new bars. A nearly featureless bed formed with limited surface graināsize heterogeneity, a slightly coarsened surface and a slightly reduced slope. In the larger flume, the formation of alternate bars was induced by an imposed upstream flow constriction and as such, the bars did not migrate. Termination of sediment supply led to progressive erosion of bed topography and loss of the bars, coarsening of the bed surface, loss of bed texture patchiness and significant slope reduction. The original alternate bar topography redeveloped when the sediment supply was restored once sufficient deposition had occurred to reconstruct the original channel slope. This shows that the bar loss was reversible by establishing the previous conditions and highlights the importance of sediment supply for bar formation. The role of sediment supply in bar formation and stability is not often recognized in stream restoration. Our results suggest that the loss of sediment supply can significantly affect alternate bar topography and that considerable volumes of sediment may be needed restore channel bars
Recommended from our members
Impact of season-long water abstraction on invertebrate drift composition and concentration
Surface water abstraction from rivers for irrigated agriculture is one of the largest uses of freshwater resources in the world. Water abstraction has important impacts on the structure of riverine assemblages. However, little work has examined the chronic, season-long impacts on ecosystem functions. Invertebrate drift is an important ecosystem function of river systems influencing nutrient cycling, food webs, and invertebrate population dynamics. We examined the season-long impact of reduced discharge resulting from multiple points of abstraction on drift assemblage composition, concentration, and total drift load. Early in the season, water abstraction had little impact on drift assemblage composition. However, later in the irrigation season, the drift assemblage at sites impacted by water abstraction diverged from upstream, control sites. The degree of change in assemblage composition at impacted sites was related to the amount of water abstracted such that sites with the lowest discharge also had assemblages that differed most strongly from control sites. Drift assemblages at impacted sites became dominated by tolerant microcrustaceans. In addition, water abstraction resulted in an increase in drift concentration (ind./mĀ³). However, despite this increase in concentration at impacted sites, total drift load (# of invertebrates drifting in the river) decreased with decreasing discharge.Keywords: River ecosystems, Water discharge, Drift assemblages, Agroecosystem
- ā¦