463 research outputs found
Real-time data compression of broadcast video signals
A non-adaptive predictor, a nonuniform quantizer, and a multi-level Huffman coder are incorporated into a differential pulse code modulation system for coding and decoding broadcast video signals in real time
The subjective effect of multiple co-channel frequency modulated television interference
As the geostationary orbit/spectrum becomes saturated, there is a need for the ability to reuse frequency assignments. Protection ratios (the ratio of wanted signal power to interfering signal power at the receiver) play a key role in determining efficient frequency reuse plans. A knowledge of the manner in which multiple sources of co-channel interference combine is vital in determining protection ratio requirements such that suitable margin may be allocated for multiple interfering signals. Results of tests examining the subjective assessment of multiple co-channel frequency modulated television signals interfering with another frequency modulated TV system are presented
An analysis of bi-directional use of frequencies for satellite communications
The bi-directional use of frequencies allocated for space communications has the potential to double the orbit/spectrum capacity available. The technical feasibility of reverse band use (RBU) at C-band (4 GHz uplinks and 6 GHz downlinks) is studied. The analysis identifies the constraints under which both forward and reverse band use satellite systems can share the same frequencies with terrestrial, line of sight transmission systems. The results of the analysis show that RBU satellite systems can be similarly sized to forward band use (FBU) satellite systems. In addition, the orbital separation requirements between RBU and FBU satellite systems are examined. The analysis shows that a carrier to interference ratio of 45 dB can be maintianed between RBU and FBU satellites separated by less than 0.5 deg., and that a carrier to interference ratio of 42 dB can be maintained in the antipodal case. Rain scatter propagation analysis shows that RBU and FBU Earth stations require separation distances fo less than 10 km at a rain rate of 13.5 mm/hr escalating to less than 100 km at a rain rate of 178 mm/hr for Earth station antennas in the 3 to 10 m range
03/28/1947 Letter from the United States Junior Chamber of Commerce
Letter from W. W. Whyte, Jr., Secretary of the Lewiston-Auburn Junior Chamber of Commerce, to Louis-Philippe Gagné.https://digitalcommons.usm.maine.edu/fac-lpg-1947-01-03/1024/thumbnail.jp
Heat-flux footprints for I-mode and EDA H-mode plasmas on Alcator C-Mod
IR thermography is used to measure the heat flux footprints on C-Modâs outer target in I-mode and EDA H-mode plasmas. The footprint profiles are fit to a function with a simple physical interpretation. The fit parameter that is sensitive to the power decay length into the SOL, λ[subscript SOL], is ~1â3Ă larger in I-modes than in H-modes at similar plasma current, which is the dominant dependence for the H-mode λ[subscript SOL]. In contrast, the fit parameter sensitive to transport into the private-flux-zone along the divertor leg is somewhat smaller in I-mode than in H-mode, but otherwise displays no obvious dependence on I[subscript p], B[subscript t], or stored energy. A third measure of the footprint width, the âintegral widthâ, is not significantly different between H- and I-modes. Also discussed are significant differences in the global power flows of the H-modes with âfavorableâ âB drift direction and those of the I-modes with âunfavorableâ âB drift direction.United States. Dept. of Energy (Cooperative Agreement DE-FC02-99-ER54512
A canonical ensemble approach to graded-response perceptrons
Perceptrons with graded input-output relations and a limited output precision
are studied within the Gardner-Derrida canonical ensemble approach. Soft non-
negative error measures are introduced allowing for extended retrieval
properties. In particular, the performance of these systems for a linear and
quadratic error measure, corresponding to the perceptron respectively the
adaline learning algorithm, is compared with the performance for a rigid error
measure, simply counting the number of errors. Replica-symmetry-breaking
effects are evaluated.Comment: 26 pages, 10 ps figure
Regulation of neutrophil senescence by microRNAs
Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease
Application of the speed-duration relationship to normalize the intensity of high-intensity interval training
The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training (HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of 4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the work rate that could be sustained for 960 s (i.e. 4Ă4 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 4Ă4 min HIIT. For fixed WR HIIT tLIM of HIIT sessions was 399±81 s for WR4, 892±181 s for WR6 and 1517±346 s for WR8, with total exercise durations all significantly different from each other (P<0.050). For maximal HIIT, there was no difference in tLIM of each of the 4 bouts (Bout 1: 229±27 s; Bout 2: 262±37 s; Bout 3: 235±49 s; Bout 4: 235±53 s; P>0.050). However, there was significantly less high-intensity work completed during bouts 2 (153.5±40. 9 m), 3 (136.9±38.9 m), and 4 (136.7±39.3 m), compared with bout 1 (264.9±58.7 m; P>0.050). These data establish that WR6 provides the appropriate work rate to normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols
Threshold-induced phase transitions in perceptrons
Error rates of a Boolean perceptron with threshold and either spherical or Ising constraint on the weight vector are calculated for storing patterns from biased input and output distributions derived within a one-step replica symmetry breaking (RSB) treatment. For unbiased output distribution and non-zero stability of the patterns, we find a critical load, α p, above which two solutions to the saddlepoint equations appear; one with higher free energy and zero threshold and a dominant solution with non-zero threshold. We examine this second-order phase transition and the dependence of α p on the required pattern stability, Îș, for both one-step RSB and replica symmetry (RS) in the spherical case and for one-step RSB in the Ising case
Mobile laminar air flow screen for additional operating room ventilation: reduction of intraoperative bacterial contamination during total knee arthroplasty
Background Surgical site infections are important complications in orthopedic surgery. A mobile laminar air flow (LAF) screen could represent a useful addition to an operating room (OR) with conventional turbulent air ventilation (12.5 air changes/h), as it could decrease the bacterial count near the operating field. The purpose of this study was to evaluate LAF efficacy at reducing bacterial contamination in the surgical area during 34 total knee arthroplasties (TKAs). Materials and methods The additional unit was used in 17 operations; the LAF was positioned beside the operating table between two of the surgeons, with the air flow directed towards the surgical area (wound). The whole team wore conventional OR clothing and the correct hygiene procedures and rituals were used. Bacterial air contamination (CFU/m3) was evaluated in the wound area in 17 operations with the LAF unit and 17 without the LAF unit. Results The LAF unit reduced the mean bacterial count in the wound area from 23.5 CFU/m3 without the LAF to 3.5 CFU/m3 with the LAF (P<0.0001), which is below the suggested limit for anORwith ultraclean laminar ventilation. There were no significant differences in the mean bacterial count in the instrument table area: 28.6 CFU/m3 were recorded with the LAF (N = 6) unit and 30.8 CFU/m3 (N = 6) without the LAF unit (P = 0.631). During six operations with LAF and six without LAF, particle counts were performed and the number of 0.5 lm particles was analyzed. The particle counts decreased significantly when the LAF unit was used (P = 0.003). Conclusion When a mobile LAF unit was added to the standard OR ventilation, bacterial contamination of the wound area significantly decreased to below the accepted level for an ultraclean OR, preventing SSI infections
- âŠ