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Canonical ensemble approach to graded-response perceptrons
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Perceptrons with graded input-output relations and a limited output precision are studied within the Gardner-
Derrida canonical ensemble approach. Soft non-negative error measures are introduced allowing for extended
retrieval properties. In particular, the performance of these systems for a (ipeadrati¢ error measure,
corresponding to the perceptrgadaline learning algorithm, is compared with the performance for a rigid
error measure, simply counting the number of errors. Replica-symmetry-breaking effects are evaluated, and the
analytic results are compared with numerical simulati$84063-651X99)04503-1

PACS numbdps): 87.10+¢€, 64.60.Cn

I. INTRODUCTION canonical ensemble approach advocated in Pgthas been
streamlined and extended to other cost functions than the

Graded-response perceptrons constitute the basic buildinggid one[11]. The methods and results obtained there are, of
blocks of layered architectures trained by the back propagacourse, also relevant for perceptron networks. First-step RSB
tion algorithm. This motivates the interest in these systems igffects above the critical capacity have then been studied in
recent years. Questions pertaining to retrieval properties dfL2] for binary perceptron networks with a GD cost function
specific architecture§1-5], to optimal capacities of net- and have been extended to other cost funct[ds14. Re-
works designed to perform a given storage tE&R] and to ~ cently, it has been show5] for the GD cost function that
generalization abilitie$8] have been adressed by statisticalin the region above the critical capacity full RSB is neces-
mechanics approaches. sary for an exact solution. A direct evaluation of the two-step

A prob]em still open for these graded_response percepRSB solution has been performEd in this case, y|6|d|ng a
trons is the development of a Gardner-Derri@@D) type minimum storage error only slightly greater than the one-
analysis[9] in order to study the optimal storage propertiesStep RSB. The conclusion was put forward that for most
when allowing errors. The solution of this problem is the Practical purposes one-step RSB will be adequate. In this
purpose of the present paper. On the one hand, this exten8dy we also want to find out whether a similar conclusion
our results[6,7] on the optimal capacity of graded-responseis Valid for the problem at hand.
perceptrons in the framework of the Gardner thedi§. On The rest of this paper is organized as follows. In Sec. Il
the other hand, the relevant cost functions used in our analyve briefly review the canonical approach adapted to the
sis here define a perceptron and an adaline learning alg@raded-response perceptron and introduce the different cost
rithm, which are both of special practical interest. functions we want to consider: the rigid one, the linear one,

The underlying idea of the GD analysis is to view learn-and the quadratic one. Section Il contains the replica theory
ing in these perceptrons as an optimization process in thior these cost functions and determines the critical storage
space of couplings. By introducing soft non-negative errolcapacity, the distribution of the local fields, and the average
measures we investigate the canonical ensemble generat@dtput error. Both the RS approximation and the first-step
by the corresponding cost function in the space of coupling®SB are treated for a general monotonic input-output rela-
using the replica method. In this discussion we allow for ation. Section V describes the results of this theory applied to
limited output precision in the storage task to be solved bywo specific, frequently used input-output relations, i.e., the
the perceptron. In particular, a linear and a quadratic errofyperbolic tangent and the piecewise-linear one. These re-
measure are investigated. The corresponding cost functior@lts are compared with some numerical simulations. In Sec.
define, respectively, a perceptron and an adaline learning a¥ the most important results are summarized. Finally, the
gorithm through the method of gradient descent. RepncaAppendix contains the technical details of the derivations.
symmetric (RS and first-step replica-symmetry-breaking
(RSB) solutions for the storage capacity, the average output Il. CANONICAL ENSEMBLE APPROACH
error, and the local field distributions are studied. For com- The task to b ived by th ded- i
parison we also derive the results for the rigid GD error. € lask 10 be solved Dy the graded-response perceptron

: ; o
measure that simply counts the number of errors. One of thg to<map a collection of(;pput pattferr{s,fi ’1$'jN}<’ 1
specific aims of this work is to determine which cost func- <#<P. 0nto a corresponding set of outputs, 1<u<p,

tion is the most efficient one for learning with errors.

For th f two- r r neural n rks th
or the case of two-state attracto eural networks the g/_l,:g(’yh'u,), (1)
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Hereg is the input-output relation of the perceptron, which isnonical ensemble generated by the free energy
assumed to be a monotonic nondecreasing function. In Eq.
(1) v denotes a gain parameter, ahd is the local field 1
generated by the inpuig?} as specified in Eq(2). The J; f(B)= _N"Lnx@m Z, ®)
are couplings of an architecture of perceptron type. We re-
strict our attention to general unbiased input patterns Speci/'vherez is the partition function
fied by (¢)=0 and(¢f'¢))=4,,,9,;C. These two param-
eters are sufficient in specifying the input pattern
distribution. Since the effect af in Eq. (1) can be absorbed z:f 11 deH 5(2 Jf—N)exq_ﬁE({hu},{gﬁ})].
in the gain parameter we take=1 in the sequel. ] J ]

We explicitly allow a limited output precision in the map- ©)
ping (1). In other words the output that results when the

input layer is in the statéz?} is accepted if In Eq. (9) the mean spherical constraBtJ; =N is adopted

to fix a scale for the gain parameterof the input-output
g(y(h") el " e)=[*—€,*+€], p=1,...p, relation. We are interested in the limit—o in which the
(3) free energy gives information about the fraction of patterns
that are stored incorrectly. In the usual way the free energy is
where e denotes the allowed output-error tolerance. assumed to be self-averaging with respect to the infgits
The strategy of the canonical approach is to require thgnq the outputs {¢#}. This average, denoted by
graded-perceptron n_etwork to go through a learning stage i(‘f(x)>{§#},{mz(f>, can be performed by applying the rep-
the space of couplings in order to find for the absolutejic trick. The standard order parameter that appears in such

minima of a given cost functio&({h*},{{*}) precisely net- 5 replica calculation is the overlap between two distinct rep-
works with the propertieg3). This cost function is assumed |icas in coupling space

to be a sum of local terms for each pattern

N
1 ,
E({h*},{¢"D) =2 V(h*,¢#). (@) A= I AN, AN=1.on (10
o
The different cost functions that will be studied here can beElsewhere we consider both the replica symmetry analysis
put into the form and the one-step breaking effe¢®BSB1). We also suppress
the indexu.
V(h“,§")=Ws(§"—E—g()’h“))JrWs(g(Yh“)—Z“—E)(,s) In the RS analysis we assume that
W,(X)=x36(x), (6)  The optimal capacity properties of the system are obtained in

the limit B—o, q—1, with B(1—q)=x taking a finite
and #(x) is the Heaviside step function. Fex=0 we get the value. In this limit, a standard calculation analogous to the
GD cost function, which simply counts the number of thebinary perceptron problerf®,11] leads to the averaged free
errors, irrespective of their size. Moreover, we consider anergy,
linear cost function §=1), where the errors are weighted
proportionally to their magnitudes and a quadratic cost func- 1 ]
tion (s=2) where the errors are weighted proportional to the (f)=extrx| ot 0‘< f Dt m'n[FRs(h’g!X’t)]> } :
square of their magnitudes. The relevance of this choice be- " {¢
comes clear when applying gradient descent dynamics to Eq. (12)
(4) with the result

with
_Syo g e _1)2
AJj= \/N% (gju JN )[Ws—1(§M e—g(yh*)) FRs(h,Z,X,t)=V(h,§)+(h2Xt) ’ (13
+Ws_1(9(yh*) = *—€)]g’ (yh*), (7

_ o _ and whereDt=(dt/\27)exp(—t%2), a=p/N denotes the
where the prime denotes the derivative with respect to thetorage capacity, and - - ), indicates the average over the
argument. Takings=1 (s=2) in this expression, we find distribution of the output patterns.

the perceptrortadaling learning algorithm with step sizé Let us denote byio(¢,x,t) the value ofh that minimizes
for the graded perceptron. The GD cost function does nof(h,¢,x,t). For a determined storage capacityhe variable
correspond to any learning algorithm. x is given by the saddle-point equatiaf)/dx=0, which
can be rewritten in the form
lll. REPLICA THEORY
The physical properties of the graded-response perceptron a531:< f Dt[ho(¢,x, ) —t]) . (14)
network defined above are derived by investigating the ca- ¢
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We immediately remark that these results are not always/(1—q;)=M a finite value anck=8(1—q,), the free en-
stable against RSB. Following standard considerationgrgy averaged with respect to the inp{i&$ and the outputs

[9,16,17 the stability condition reads {{} can be written as
d 2 , 1
aRd th a[ho(g,x,t)—t] <1. (15 (f)=lim max —Wln[lJr M(1—qp)]
(& B X,dg,M X
For the exact mapping task where: 0 the result found in do
[6] for the critical storage capacity corresponding to the GD T 2X[1+M(1—qg)]
cost function is retrieved when we take the limit« in Eq.
14 o
( ) T My <f DtOIn \I,(gaxquIM!tO)> (23)
. 2 MXx {0
ag =1+<h{>{§}, (16)
with with
1 W (£,x,00,M,to)
hf:yg‘l(é)- 17

:f Dtiexp{ —Mx min Frepi(h,{,X,do,to,t1)}
Similar to binary network$11,13, «. is the same for all h
cost functions. Clearly, for> «, errors will be introduced (29
that depend both in quantity and in size on the specific cost
function used. An interesting expression to look at in thisand
respect is the distribution of local fields since it provides _
more information on the deviation of the errors from the | RsBiM&X.do,to,t)=V(h.{)
1
+§(h_to\/q—o_t1\/1_%)2-

correct output. For a given desired outpyt it is defined as
1 N
p(h[{)= 5( h——=2 ijj) , (18 (25)
N 1948
' For a chosen storage capacity the variables, gy, andM
where the thermal average ovéris taken subject to the are given by the saddle point equationg(f)/ox

mean spherical constraint introduced before. Following Ke—q, 3(£)1390="0, andd(f)/IM=0.

pler and Abbot{18], we find for the graded perceptron The first-step RSB distribution for the local fields corre-
sponding to patter§ becomes
h =th5 h—hg(Z,x,1)). 19
pRS( |§) ( 0(£ )) ( ) pRSBl(hig)
An overall measure of the network performance is given by _
the average output error = | Dto] Dt

E=(E& D)o (20) Xqu_MXFRSBl(hOﬂé’inQO!tOvtl)]é(h_hO)
\I,(grxaqOJVI!tO) '

where thel-dependent output errdi({) is given by

(26)

g(g):f dhprg(h[)[W1({—e—g(vh)) wherehy=h(¢,x,q0.t0,t1) is the value oh that minimizes
Frsei(h,¢,X,q0,t,t1). The average output error in RSB1

+Wy(g(yh)—{—e)]. (21)  approximation is obtained by replacing expressi@8) by

. . . (26) in (21).
From the results in the literature on the binary perceptron

problem [12,13,13 and from our former studies on the

graded perceptron systeff,7] we expect RSB effects. So

we want to improve the RS results by applying the first step  The theory outlined in the last section has been applied to

of Parisi's RSB schemgl9]. We, therefore, introduce the the specific cost functions defined in E¢S). and(6). For the

following order parameters: input-output relationg we have used both the hyperbolic
tangent and the piecewise-linear function

IV. RESULTS FOR SPECIFIC COST FUNCTIONS

dr, if a;=p4,
=qylgl= . 22
D =96.5,= g0, i @y By, (22 % for IX<1, X
g(x) (27)
sgnx), elsewhere.
where aq,B:=1,...n/m;a,, Bo=1,...m and I=m
=n. We remark that in the limih—0, O=m=1. A priori, our aim is not to compare the macroscopic proper-

Similar to[13] we find after a standard but tedious calcu- ties of graded-perceptrons for the two different input-output
lation that in the limitg;—1~,m—0 and 0<qgy=<q; with relations since, in general, they are qualitatively the same. In
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fact, the results obtained here are complementary. For the. For small€ values, the peak is also present, but it is less

hyperbolic tangent input-output relation the RS solution ispronounced and shifted towards highevalues, similarly as

found to be stable over an important range of values for thg, pet 6], In the case of both the linear and the quadratic
parameters andy while in the case of the piecewise-linear cost functions no maximum is found for a finite gain param-
input-output relation the RS solution is always unstable.eter

However, frqm amaore techmcal point .Of view in the case of Next, it is interesting to discuss the main features related
the hyperbolic tangent function, the mimimizationFgs in the de Almeida—Thouleg&T) line also shown in
the corresponding averaged RS free energy with respect {ﬁ . ) QAT A

ese figures for the three cost functions. As seen in Fa. 1

the local fieldh [recall Eqgs.(12) and(13)] only leads to an 2" ) . :
equation defining as a function of the minimizing value, for the_r|g|d cosF functiongar decreases .mor_lotonlcally with
similarly as in Ref[6]. The RS solution is stable in the

(see the Appendix This equation needs to be inverted but 7 ) = :
depending on the values afx and ¢ the inverse function (connected region below this line. For both the linear and
may be multiple valued and hence(sometimes very te- the quadratic cost functiongar is no longer a monotoni-
dious Maxwell construction is required in order to make it cally decreasing function of. Whena becomes larger than
single valued. Consequently, only the RS solution is studiedr., the patterns are stored in such a way that, as discussed
in detail in this case. On the contrary, the piecewise-lineabelow, a “gap” structure arises in the distribution of the
input-output relation permits an explicit calculation of the local fields, for all values of. It is well known[17] that this
minimizing valueshg(¢,x,t) and ho(Z,X,qq,t,t1) Of the  gap destabilizes the RS solution, and consequently RSB is
functionsFgs andFgsp; in the corresponding averaged free required immediatly above the line.(y). For a<a,, the
energies. This, in turn, simplifies drastically the calculationsnetwork is not saturated, there is no gap in the distribution of
and both the RS and RSB1 solutions are completely workeehe local fields, and the RS solution is stable. Furthermore,
out in this case. for « much larger thamy,, and sufficiently small, the gaps

At this point, we remark already that the Maxwell con- are being filled up, and the RS solution eventually becomes
struction in the hyperbolic tangent case gives a discontinuitgiaple. Consequently, there is a RS-stable region also above
in hg(t) having an effect on the stability of the RS solution. a., but it is disconnected from that below [see Figs. (b)

Similarly, due to the fact that the piecewise-linear input-pnq y¢) 1t is important to repeat that the region of instabil-
output relation is not everywhere differentiable a gap struc-

ture in the distribution of the local fields emerges signalingIty between the two stable regions has its origin in the gap
the instability of the RS solutiofi.7]. The effects of RSB for structure. Conversely, we recall that for the rigid cost func-

the cost functiong5) and(6) are found to be important. tion there are no gaps. For ajl values, there is always a

Elsewhere we present the results of our calculations botﬂnlte interval abover; where the RS solution is stable. This

for the hyperbolic tangent and the piecewise-linear input!S the reason why the stability region in this case is con-

output relations. In order not to interrupt the line of reason-Nected, with thexr line extending up toy—c.
ing we refer all technical details of the calculations to the |t seen that the rigid cost function has the worst perfor-
Appendix. mance for all values ofy. For both the linear and the qua-

dratic cost function a monotonically increasin¢but
) _ _ boundedl capacitya results. In general, the linear cost func-
A. Hyperbolic tangent input-output relation tion has the best performance. This behavior of the graded

In this subsection we compare the performance of theerceptron network can be understood in terms of the “strat-
three cost functions defined in Eq$) and (6) by studying egy” used by a specific cost function to arrange the local
their average output errof,[recall Eq.(20)]. Our strategy is  fields when learning the patterns. The rigid cost function puts
to consider a linearg=1) and quadratic§=2) “entirely  all local fields in a connected interval, thereby minimizing its
soft” cost function versus a “completely rigid” ones(  width. It does not try to optimize the learninigside the
=0). Soft means that we do not fix the output-error toler-interval in order to decrease the average output error. How-
ancee, since some outputs might be far away from the cor-ever, the linear and quadratic soft cost functions do optimize
rect output{. Entirely soft indicates that we work without their performance by penalizing the errors linearly or qua-
tolerance at all by putting=0. For the completely rigid cost dratically with their size. They try to arrange the local fields
function, e was determined in the function of the loading in a close region around the valbig resulting in the correct
capacitya, by solving (for €) the optimal capacity for the output{ under the action of the input-output relation. In both
graded perceptron in the microcanonical apprdaeball Eq.  cases the resulting distribution of the local fields shows a
(9) of Ref.[6]}. We remark that the rigid output error toler- sharp peaka & peak in the linear cagath,, and decreasing
ance is almost constant for the whojeinterval considered. tails. A gap in between can occur. The tails of the quadratic
We havee=0.105, e=0.225, ande=0.553, respectively, cost function decrease faster than those of the linear cost
for £=0.1, £=0.2, and€=0.4. The output distribution is function. We will present figures below for the case of the
taken to be uniform in the interval1,1]. piecewise-linear input-output relation where a similar behav-

The results are presented in Figs. 1 and 2. First, we shovor has been found. It is worth remarking that the linear cost
in Figs. 1a@-1(c) the loading capacity as a function of the function shows a somewhat improved behavior compared to
gain parametery for a constant average output errér the quadratic one. This may be justified by recalling that,
=0, 0.1, and 0.2 in the case of the three cost functions. Fosiccording to Eq(21), the output error is the linear distance
the rigid cost function, we plot an additional curve f6r between the actual and the correct output, and this is exactly
=0.4 to indicate that the capacity has a maximum for finitethe quantity that is minimized by the linear cost function. In
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FIG. 1. Storage capacity for the hyperbolic tangent input-output relation as a function of the gain paramestisonstant total average
output error€=0 (lower curve, 0.1, 0.2, and 0.4upper curve for the GD cost function{a), the linear cost functioib), and the quadratic
cost function(c). In (b) and(c) the line for£=0.4 is not shown. The dotted curve is the AT line. The cumyds the critical capacity.

other words, the linear cost function is suitably designed tay. (for £=0) and ay. For a<ag, the perceptron is not

minimize the output error. saturated, i.eq<1 and the present calculations do not cover

Let us discuss then in more detail the gap structure of thenjs region. We notice that for smadl the gap line lies very
local fields, revealed by the liney in Figs. 2a) and 2b).  close to the AT line. A similar behavior has been noticed in
For the rigid cost function, no gaps are present, since thginary networks trained with noisy patterf0]. For grow-
output tolerance: is chosen such thatll fields are inside a ing a=«,, the width of the gaps decreases from an infinite
connected interval. For the linear and quadratic cost funcvalue ata. to become zero ag approachesyy. In the
tions Figs. 2a) and 2b) present the relevant results in the region betweerny, and a,r there are no gaps, but the RS
(a-7) plane. A gap is present in the region between the linesolution remains unstable.
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10.0

quadratic cost function all the curves for the hyperbolic tan-
gent input-output relation are RS unstable.

The origin of instability against RS breaking fluctuations
is relatively easy to understand in the region where gaps in
the local field distribution are presefitl,17,2]. One can
argue that it is not possible to pass continuously from one
replica of the system where a specific pattern is learned in
one “band” of the local fields, to another replica where that
pattern is learned in another band. The corresponding solu-
tions are disconnected in the space of replicas, and the over-
lap between pairs of replicas cannot be the same for all pairs,
contrary to the RS assumption. In the region where there are
no gaps this argument is no longer valid. Here, one may
argue that spreading the local fields over one single but wide
band can also disrupt the space of replicas. Maybe the notion
of critical bandwidth is relevant here. This could be an inter-
esting subject for further study.

B. Piecewise-linear input-output relation

00 For the piecewise-linear input-output relation we do con-
0.0 1.0 20 sider a nonzero output-error toleranegi.e., all the inputs

@ ¥ whose corresponding output lie inside the interfvat e, ¢
+ €] do not contribute to the average output error. As out-
lined before the numerical calculations are easier than those
for the hyperbolic tangent, and the study of the RSB1 solu-
tion in some detail becomes feasible. Numerical results as
well as simulations are discussed o+ 0.5.

Before passing to these results, it is worth mentioning that
the introduction of a fixe@& allows us to replace the study of
the s=0 cost function with a completely rigid constraint
discussed in Sec. IVA, by a true GD cost functigh) and
(6) for s=0].

RSB § In Figs. 3a) and 3b) we see both the RS and the RSB1
average output errd as a function of the loading capacity

for y=1 for the three cost functions considered. Figu@ 3
concerns the GOdotted curvesand quadrati¢full curves
cost functions, Fig. @) the linear one. For all cases the
upper curves are the RSB1 results, so as expedigsh;

> Ers for all >« . For comparison, simulations were per-
formed for networks withN=200, 400 both for the linear

o, and quadratic cost functions. At this point we remark that the
GD cost function does not correspond to any learning algo-
rithm. The circles (diamond$ denote the N=200 (N

20 =400) results. The agreement with the analytic results is
satisfactory in the sense that we know that the overall over-
estimate of the average output error is due to a very slow
output relation in thex-y plane for the linear cost functiof@) and convergence to the minimum of the free energy, even using

the quadratic cost functiofb). The curvea, is the critical capacity, some straightforvyard techniqqes of simulated annealing.
the curveay represents the gap line, and; is the AT line. Much more sophisticated versions of the latter should be

used but this is not the purpose of the present work.
] N ] In the region of the network parameters considered, the

Concerning the stability of our results with respect to RSjinear cost function gives the best performance. According to
breaking, we see that for the rigid cost function the curvegne RSB1 results, the least efficient is the quadratic cost
for the capacity as a function of the gain parameter at confunction if «<4.8, and the GD cost function elsewhere.
stant average output error are “stable” starting fron 0 Figure 4 showsx as a function ofy at constant. For
up to the point where the curves reach their maxim@im  each cost function, the uppéiowen curve corresponds to
agreement with the results ¢6] for constant output-error the RS(RSB1) result. For ally the highest capacity is given
tolerancg. For the linear cost function, the RS curves areby the linear cost function and foy<+2.5, the quadratic
stable for smally and not so smalE. However, for the cost function gives the lowest capacity.

(b)

FIG. 2. The gap structure for the hyperbolic tangent input-
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FIG. 3. The total average output err6ras a function of the
storage capacityr for output tolerancee=0.5 and gain parameter
vy=1 in the case of the piecewise-linear input-output relatior(dpr
the GD cost functior{dotted line$ and the quadratic cost function
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FIG. 4. Storage capacity for the piecewise-linear input-output
relation as a function of the gain parametefor an output toler-
ancee=0.5 and a total average output er®+ 0.05 for the GD
cost function(solid lineg, the linear cost functiofidashed curves
and the quadratic cost functiqdotted curves For each case the
upper curve is the RS result, the lower one the RSB1 result. The
dashed-dotted curve is the critical storage capacity.

have studied the cas®=0.05. In the latter, we are closer to
the critical capacity. From these calculations one might con-
clude that the relative performance of the different cost func-
tions depends also on the amount of errors. In other words, it
matters how far one is beyond the critical capacity and the
quadratic cost function performs better in the higlegime.

In order to discuss in more detail the effects of RSB, we
have studied the distribution of the local fields for the three
cost functions. As an illustrative example, we present in
Figs. 5a-5(c) the RS and RSB1 distributions for the spe-
cific parametersx=5, y=1, €=0.5, and{=0.6. In general
terms, the discussion above concerning the RS local field
distribution for the hyperbolic tangent input-output relation
remains valid. For the RSB1 distribution, the following has
to be remarked. In the case of the GD and the linear cost
function the coefficients of thé-part in the RSB1 local field
distributions become smaller. To give an idea about this
change we mention that, e.g., for the GD cost funcfrecall
Egs. (A5) and (A12)], for the parameters mentioned above,

(solid lines, and (b) the linear cost function. For each case the & h=0.1 these coefficients are 0.415 for the RS solution
upper curve is the RSB1 result, the lower one the RS result. Nuversus 0.194 for the RSB solution. Similarly for the qua-

merical simulations of the quadratic cost function(& and the
linear cost function in(b) are indicated as circlesNE=200) and

diamonds N=400). Error bars are shown.

The reason why the performance of the2 quadratic

dratic cost function the maximum in the distribution de-
creases. Furthermore for the three cost functions, the con-
tinuum part of the distribution is more populated for the
RSB1 than for the RS solution, and the width of the gaps are
smaller. Finally, RSB effects in the local field distribution

cost function is worse here is based on the fact that with @re less pronounced for the quadratic cost function.
nonzeroe, the average output error decreases. The curves for The distribution of the local fields resulting from simula-

the hyperbolic tangent input-output relation are all #©r

tions of networks witiN= 200 are also shown on these Figs.

=<0.4, while for the piecewise-linear input-output relation we 5(b) and Sc) for, respectively, the linear and quadratic cost
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FIG. 5. Distribution of the local fields for the piecewise-linear input-output relation@nd, y=1, e=0.5 and the correct output
=0.6 for the GD cost functiofa), the linear cost functiofb), and the quadratic cost functidn). The dotted curves are the RS results, the
solid lines the RSB1 results. i) and(c) the histograms are results from numerical simulations witk=200).

functions. In both cases, a very good agreement with theutput relation for three different cost functions: the
RSB1 local field distributions obtained analytically is ob- Gardner-Derrida cost function that simply counts the number
served. This result extends the observatior{ 18] that an  of errors irrespective of their sizes, the linear cost function

RSBL1 treatment is adequate for the calculation of the storag@here the errors are weighted proportionally to their magni-
error to the calculation of local field distributions. tudes and the quadratic cost function where the errors are
weighted proportionally to the square of their magnitudes.

V. CONCLUDING REMARKS ThrOl_Jgh the _method of gradlent descent the last two cost
functions define, respectively, a perceptron and an adaline

In this paper we have studied the canonical ensemble apearning algorithm.
proach to the optimal capacity of graded-response percep- Results have been obtained for the storage capacity as a

trons with a hyperbolic tangent and a piecewise-linear inputfunction of the gain parameter, for the distribution of the
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local fields and for the average total output error above critistep RSB results are in remarkable agreement with the dis-
cal capacity in both RS and RSB1 approximations. Simulatributions obtained by numerical simulations. This is one of
tions for linear and quadratic cost functions have been perthe important outcomes of this work which, we believe, may
formed. Here we summarize the main properties of the threbe extended to other systems.
cost functions.
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refined discussion of this RS instability has been possible in

the a-y plane showing, e.g., that the instability stays in re- APPENDIX: THEORY FOR SPECIFIC COST FUNCTIONS

gions of the network parameters where no gap occurs and

that RS stability can be restored for small In this appendix we apply the general theory discussed in

. . o Sec. lll to the specific cost functiotS) and(6). In particular
First-step RSB results have been obtained and it is Se&fle study the RS solutions for the hyperbolic tangent input—

g]nai)iltr;l?tdz)rg:aisgqu’Oflg)e?haevf:};?)%iigt?sl (;tj/tepritsgm?e d ioutput relation and both the RS and RSB1 solutions for the
. X i iecewise-linear input-output relation defined in .
RS by typically about 10%. Furthermore, also the local f|eldrb| wise-l input-outpu ! I in 2)

distributions are changed considerably due to RSB1 effects,
in agreement with earlier findings]. From Ref.[15] we
know that although for the binary perceptron with the In the case of the GD cost function with output tolerance
Gardner-Derrida cost function an exact solution for the stor€ the results presented here are valid, of course, for both
age error above critical capacity requires full RSB, one-stefnput-output relations considered, by taking in the end the
RSB may be considered sufficient. In a similar way we havaelevant expression fog~1({—e€). In the case of the RS
shown here that also for the local field distributions the first-treatment, the minimum ih of Eq. (13) is given by

1. GD cost function

ho=t, Fgrgho,lX,t)=1, for —co<t<|—2x,

(1-1)2

R for 1—\2x<t<l,

hozl, FRs(ho,g,X,t):

ho=t, Fgrgho,{,x,t)=0, for I<t<u,

u—t)2
ho=u, FRS(ho,g,x,t)z( 2x)’ for u<t<u+2x,
ho=t, Fgrgho,l,X,t)=1, for u+2x<t<eo, (A1)
|
where From Eqgs.(14) and (Al), we obtain the saddle-point equa-
tion
: Ni-e), if (—e>-1
- —€), | — €~ —1,
| = yg (A2)
| +y2x
—,  elsewhere aésl=<f _Dt(t—I)ZJrfu th(t—u)2>.
1—2x u ¢
and (Ad)

1
;g*l(g+ €), Iif {+e<l,

(A3)  Combining Eqs(19) and(A1), the distribution of local fields
o, elsewhere. becomes
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_(h2
e~ (h?2)

V2w

+0(h—u—2x)]+ 5(h_')ﬁl, Dt

[6(1—2x—h)+ 6(h—1)— 8(h—u)

p(h,0)=

u+2x
+5(h—u)f Dt. (A5)

The RS output error is obtained from Eq21) and (A5):

&=y (H% lethfh'_mDh(l—h)
hz 1 —o
+ju+VﬂDh(h—u)+ ;—u)fhz Dh}, (AB)
where
1
h1=min(l— J2x, — > ) (A7)

and

. (A8)

1
h2=ma)<(u+ 2X, —
Y

For the RSB1 solution we gehg(Z,X,qq9,t0,t1) and
Frsei(ho, ¢, X,do,to,t1) from ho(Z,x,t) andFgg(hg,,X,t),
respectively, by substituting by to\/oo+t;vV1—qo in Eq.
(Al). The function¥ (¢,x,q9,M,tp) in Eq. (24) becomes

W(£,X,00,M,to)

Q- \Z,qo ,to)
=e*'\"xj Dt

— o0

1

Q(l,q9,tp)
+ Dt1CD(|,M,C|o.to,t1)
Q(1-2x,q9.tg)

Q(u,qp,tg)

+ Dt
Q(1,40.t0)
Q(u++2X,q9,tg

+

Q(u,qg,tp)

)
Dth)(u, M qu 1t0 1tl)

+e*MXf Dt,, (A9)

Q(u+2x,q9.tg)

where

O(w.q t)_w_to@
do.tg) = —F——
V1—=qo

(A10)

and

D (w,M,dg,to,t1) =exp{— 3M(1—0o)[ Q(w,qo,to) —t1]%}.
(A11)

The averaged free-energy is obtained by plugging this ex-
pression into Eq(23). Expression(26) then leads to the
{-dependent distribution of local fields,

Dt,
p(h'g):fw,x,qo,m,to)

exp{—%ﬂz(h,qo,to)

—Mx _ _
X NEET] [e"M*g(1 — V2x—h)
+[0(h=1)—6(h—u)]+e M*ah—u—+2x)]

Q(l,q9.tp)
+o(h—1) Dt;®(I,M,qq,tg,t1)
Q- 2%,dg.to)

Q(u+2x,09,tg)
+d8(h—u) Dt;®(u,M,qgp,tg,t1)
Q(u,qp,tp)

(A12)

Finally, the{-dependent RSB1 output error is given by com-
bining Egs.(26) and (A12):

Dto ye_MX

5(§)ZJ'\11(g,x,qo,M,to) V2m(1-do)

x[ ﬂ:dmf T

|
hy
hy 1 o
+f dh(h—u)+(——u)f dh]
u+2x Y hy

xexd —30%(h,qo.to)], (A13)

1
[+ -
Y

with h; andh, defined in Eqs(A7) and (A8), respectively.

2. Linear cost function

Let us start by considering the RS approximation first. For
the piecewise-linear input-output relation the minimization
in h of Eg. (13) can be done explicitly leading to the follow-
ing result:
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ho=t, Fgrgho,{X)=7y

1
I+; ) for —eco<t<hy,

X
ho= X+, FRS(ho,g,x,t)zy(|—77—t>, for hy<t<h,,

(1-1)?
2x '

hozl, FRS(h01§IX1t): for h2<t<|,

hozt, FRs(ho,g,X,t):O, for |<t<u,

(u—t)?

h0=u, FRs(ho,g,X,t): 2% , for U<t<h3,
X
hg=— yx+t, FRs(ho,g,x,t)=y(—u—7+t ,  for u<t<hy,
1
hO:t, FRS(hO,Z,X,t)Z}/(;—U), fOI’ h4<t<m, (Al4)
|
wherel andu are again given by the formul@a2) and(A3). B , 5 [P I ) hy )
The variablesh;, h,, hg, andh, are defined as follows: ags={ ¥X fh Dt+fh Dt(t—1) +fu Dt(t—u)
1 2
hy
+ v?x? f Dt> . (A19)
1) 1 yx ha Sy
= \/2yx|1+—= |, if I<——+—,
4 y 2
h,= 1 X
Y
T elsewhere, Using Egs.(19) and(A14), the RSZ-dependent distribution

(A15) of local fields becomes

1) 1 h?
=/ 2yx|1+— ], if I<——+—F, exp -5
hy= v vo2 p(h,{) = ———
|—vyx, elsewhere, V2
(A16)

X[6(h;—h)+ 6(h—1)—6(h—u)+ 6(h—hy)]

2
1 1 X (h=x)
u+ \/2yx ——u), if u>——y—, exr{— 2
hy= Y y 27 (A1)

+ [6(h—hy)—6(h—1)]
u+yx, elsewhere, V2m

+5(h—|)fhI Dt+ 5(h—u)fh3m
2 u

1 ) 1 X
ut\/2yx|——uf, if u>———,
hy= 7 Y2 (ag)
11 (h+ yx)?
;+?, elsewhere. e
+ 6(h—u)—6(h—h3)],
(A20)

The RS saddle-point equation is obtained from E4) and
(A14): where
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1 X
|if l<——+ 2
hl= v 2 A21)
——+—, elsewhere
y 2
and
1 X
u,ifu>;—%?
h;= (A22)
—— —, elsewhere.
y 2

The RS average output error is obtained from Eg4) and
(A20):

,(h2/2)+f dh\/_

j 1 dh
_m\/_

_ 2
o

; dh % (h+ym

\/_

}(l—h)

(h—u)

—W@EL (A23)

+(1 )fw dh
——u —e
y hy \2m

For the hyperbolic tangent input-output relatidr,given
by Eq. (17) is always a local minimum of Eq.13). Other
local minima of Eq.(13) are defined as solutions of

<0F(h,§,x,t) (A24)

=0

and they can no longer be determined analytically. The equa-

tion

t(ho)=ho+yxg'(vho)sgrig(yho)—¢]1  (A25)

needs to be inverted in order to filgy=hg(t) (the prime
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(A26)

If monotonicity holds,hg is a solution of Eq.(A25) for t
<t, or t>t2’, wheretfzhgi yxg'(vh,). If nonmonoto-
nicity holds, hy(t) has one or two jumps at=t, and/ort
=t,, whereby we assume thgt<t,. The values ot; and
t, are then determined using a Maxwell construction in the
functiont(hg). The number of jumps depends on the value
of y?’x and(.

From Eq.(19) and from the inversion of EqA25), we
obtain the following expression for the distribution of the
local fields:

t3(h)
0T

o d 1
p( |§)—%T+§

x 8(h—h,).

Al

(A27)

If monotonicity holds, thert;=t, andtzztg+

Due to the fact thal, is a global minimum of Eq(13) in
the intervalt;<t<t,, t(hy) always displays a jump itn
=h,. This jump gives rise to the second term in the right-
hand side(r.h.s) of Eq. (A27). If nonmonotonicity holds,
t(hg) shows plateaus &t andt,, leading to a gap structure
in the distribution of the local fields. The resulting disconti-
nuity in dhy/dt causes a divergence of the L.h.s. of Etp).
This means that when nonmonotonicity holds, the RS solu-
tion is always unstable. In the case of monotonicity, the sta-
bility condition reads

1 -2
2 " -1
y°xg"(yho)

1 2
vXg"(7vho) o

(A28)

+j Dt
o

Next we consider first step RSB for the piecewise-linear
input-output relation. Similarly to the GD cost function we

denotes the derivative with respecth). Depending on the substitutet by tovVOo+t1vV1—0o in Eq. (A14) in order to
value of y2x, t(ho) is a monotonic function or not, and con- obtain hy(Z,X,qg,to,t1) and Frsgi(hg,Z.X,do,tg,t1). The
sequently invertible or not. The onset of nonmonotonicity isfree energy is obtained from Ed23) with the function
given by the system of equations W ({,%,00,M,tg) [recall Eq.(24)] given by
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Q(hy,00.t0) X
j n th1+exr{—Myx(l—y7—to\/%”

—o0

1
I+ =
Y

‘I’(é'.X,qo,M,to)=ex;{—M X

Q(hy,dg.tp) Q(l,q9,tp) Q(u,dp,tp)
xf e Dtlexp[Myxtlx/(l—qo)]—kf o Dtltb(I,M,qo,to,tl)Jrf bt
Q(hy,q9,tg) Q(hy,q9,tg) Q(l,q9,tg)
Q(h3z,q9.tg) YX Q(hy,q9.tp)
+J Dt;®(u,M,qp,tg,t1) +exp —Myx —u—7+t0\/% f Dt,
Q(u,q9,tp) Q(hz,q9.tp)
1 0
Xexp[—Myxtlx/(l—qo)]+exr{—Myx(——u f Dt;. (A29)
Y Q(hg,q0,t0)
The RSB1/-dependent distribution of the local fiel¢26) becomes
M | ! 1(22h
(h 5)—f P i B BT 8(h,—h)
P V(Z,%,00.M.to) V2m(1-qo) .
Mox 1+ 2 —n| = Zazn
+ex —Myx +7— ) (h—1vx,0o,tp) ath—ho)— o |)]9(|+1 X +ath—l) Q(1,49.tg)
v2m(1—do) ? y 2 Q(hy,d0.to)
192 h
X Dt,;d(1,M,go.t t)+ex R Lath—1)—ath—w]+8h-uw [ %" Dt (uM.ag.to tr)
1 1 1 1 - - _u _u u! ’ L 1
1 Go.lo,l1 2m(1-0y) 0,10 1 Go.lo,la
Mox| h—u+ 25 | = Zozn
+ex " H—? 2 [6(h—u)—6(h h’>]9(1 7 )
—u)—6(h— ——=-u
2m(1-do) 3 y 2
1 1QZ h
ex ~Myx| ——u| = 50%(h.do.to) , (A30)
+ o(h—h,)

V2m(1—qo)

Finally, the {-dependent RSB1 average output error reads

1
I+ =
Y

lo

&)=

hy 1
}j dhexp{ —EQZ(h,qo,to)}

1 X
|+——7—)
vy 2

1 X
9(;‘?‘“)

exr{ —M yx

f Plo 4 (I+E
\P(g,x,qo,M,to) \27T(1—q0) [ Y

| 1 YX
+J dh(l —h)ex;{ - Eﬂz(h—yx,qo,to)— Myx( [+ 7—h
h;

h. 1, X
+j 3dh(h—u)ex _EQ (h+ ¥X,00,tg) —Myx| h—u+--
u

2
yufo -
——ujexg —Myx|——u
Y Y

Again we look at the RS treatment first. We start by defining

1
h1=l—\/1+272x(l+;

+

°° 1
f dhex;{—iﬂz(h,qo,to)”. (A31)

hy

3. Quadratic cost function

) (A32)
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I+;
hy=|— ———, A33
2 1+24% (A33)
1
——u
hy= U+ — (A34)
s \/1+2yzx,
1
hy=u+1+2vy x(;—u). (A35)
Using these definitions, the result of the minimizatiorhiof Frs[Eq. (13)] becomes
1 2
hozt, FRs(ho,g,X,t)z'yz I+;) ’ for _oo<t<hl,
2y°xl+1 Focho.Lx,) = 72 (1—1)2 ; h <t
- y 6, X, 1) = ' or <t< !
0 1+29%x RSO 4 1+2y%x !
ho=t, Fgrghg,{,x,t)=0, for I<t<u,
2yxutt «(ho, 2 X, 1) =2 (u-v* <t<h
= y 16, X, 1) = ' oru !
O 1422 RO Y 112y N
1 2
hO:t, FRs(ho,g,X,t):’yz(;_u) y for h4<t<x (A36)

The RS saddle-point equation is obtained from E4) and

)

From Egs.(19) and (A36), the RS¢-dependent distribution
of the local fields becomes

2y°x
142X

ARs =

Dt(t—1)2+ fh4Dt(t— u)2> .
(A37)

h2
exp{— 7
N2

+6(h—h4)]+(1+2y%x)

p(h,0)= [6(h;—h)+6(h—1)—6(h—u)

exp[—%[(1+272x)h—2y2xl]2]
V2w
X[6(h—hy)—6a(h—1)]

X

1
exp[—E[(1+2y2x)h—272xu]2

V2

+

X[H(h—hu)—&(h—hg)]]. (A38)

Consequently, the R&dependent output error becomes

&)= |+3thﬂexp[—h—2 +(1429%)
g =7 y —W\/ZT 2 Y
20V 922y 12
y |dhmex%[(l+2'yx)h 2y°xl] (1—h)
hy 2
h3
+(1+2y2x)f dhy2m
20V D 2y 1112
Xexr{_[(l-l—Zy X)2h 2yxu] (h-u)
+ l_ ) _wﬂ %_h_z A39
5 u o \/ﬁex 5 . (A39)

For the hyperbolic tangent input-output relatiti,(recall
Eq. (17)) is no longer a local minimum of Eq13). The
minima are always given by the solutions of E@\24),
which definet(hg) as

t(hg) =ho+2yxg’(yho)[g(yho)—¢].

Depending on the values 9fx and{, t(hy) is a monotonic
function or not. The onset to nonmonotonicity is given by the
system of Eqs(A26). If monotonicity holds,hy(t) is con-
tinuous, and is obtained by inverting E@\40). Otherwise,
ho(t) displays one or two jumps att; and/ort=t,, whose
values are obtained by a Maxwell construction.

(A40)
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The distribution of local fields is obtained directly from H49),

t?(h)
dt 072

p(hO)= gr ——= (A4D)

V2

When nonmonotonicity holds, the jumpshig(t) give rise to a gap structure in the distribution of the local fields and the RS
solution becomes unstable. In the monotonic case the stability condit®meads

+o0 1 2>
Dt +1 <1. (A42)
aRS< . (272x[<g'<yho>>2+(g(yh@—@)g"(yho)] ) @

Let us finally turn to the RSB1 treatment. Again, in order to obta&if{,x,dg,to,t1) and Frsgi(hg,<,X,qg,t0,t1) We
substitutet by tg\Vgo+t;V1—0qo in Eq. (Al4). The free energy is obtained from E23), whereby the function
¥ ({,x,00,M,1p), given by Eq.(24), becomes

2

1 Q(hy,49.to) h.do.to) 2M y%x Q(u,g9.to)
\P(g,x,qo,M,to):eX _M’)/ZX |+_ f Dt1+f Dth) I,—,qo,to +f Dt
Y —o Q(hy.dg.to) 1+2y%x Q(1,90.t0)
hy.do to) 2M y?x 1 2] (=
~l—f Dt;®| u,———,qo,to| +exg —My?*x| ——u f Dt;. (A43)
Q(u,00.to) 142y Y Q(u,dg.to)
For the RSB1{-dependent distribution of the local fields we obtain
M I ! 192 h
" g)—f Dt, exg —Myx +; ) (h,qo.to) -
PR W (%00, Mto) 2r(1-ao) .
X
EX[{—M)/X(FF’y——h)—%ﬂz(h—’yx,qo,to)}
+ 2 [a(h—h’)—a(h—|)]+5(h—|)f0“'q°'t°) Dt (M,1,qo,to,ts)
’—277(1—q0) 2 iy 0.t 1 1 0osto,1g
exﬁ:_%ﬂ(h,%,to)] Q(hg,qg.tp)
+ O(h—1)—6(h—u +6h—u)f Dt;®(M,u,qg,tg,t7)
’—277(1—q0) [6( )—o( )1+ 6( g 1) 1D( Qo,lo,11
expg —M yx h—u+7 —3Q(h+ yx,qq,tp)
+ [6(h—u)—6(h—h3)]
V2m(1-q0) ’
1
ex;{—Myx(;—u)—%Q(h,qo,to)}
+ o(h—hy) | . (A44)
V2m(1-0o)

The {-dependent RSB1 average output error becomes

1
1+=
Y

2] rn
U "dh ex — 202(h,qo.t) ]+ (1+22X)

5(§)=J' Dlo 4 [(I+E>ex;{—M X
V(Z,%,00.M,t0) \2m(1-qq) y 4

X fldh(l—h)exp{—%m[(pr 2v°X)(h=1)+1,dg,to]— M yzx(1+2y2x)(h—|)2}+(1+2y2x)fh3dh(h—u)
hy u

——ujexg —Myx|l——u
Y Y

xf:dhexq—% 2(h,qo,to)]]. (A45)

xexp— 3 Q%[(1+2y*x)(h—u)+u,qg,tg]— My*x(1+ 2y?x)(h—u)?} +
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