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Canonical ensemble approach to graded-response perceptrons
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Perceptrons with graded input-output relations and a limited output precision are studied within the Gardner-
Derrida canonical ensemble approach. Soft non-negative error measures are introduced allowing for extended
retrieval properties. In particular, the performance of these systems for a linear~quadratic! error measure,
corresponding to the perceptron~adaline! learning algorithm, is compared with the performance for a rigid
error measure, simply counting the number of errors. Replica-symmetry-breaking effects are evaluated, and the
analytic results are compared with numerical simulations.@S1063-651X~99!04503-1#

PACS number~s!: 87.10.1e, 64.60.Cn
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I. INTRODUCTION

Graded-response perceptrons constitute the basic buil
blocks of layered architectures trained by the back propa
tion algorithm. This motivates the interest in these system
recent years. Questions pertaining to retrieval propertie
specific architectures@1–5#, to optimal capacities of net
works designed to perform a given storage task@6,7# and to
generalization abilities@8# have been adressed by statistic
mechanics approaches.

A problem still open for these graded-response perc
trons is the development of a Gardner-Derrida~GD! type
analysis@9# in order to study the optimal storage properti
when allowing errors. The solution of this problem is t
purpose of the present paper. On the one hand, this ext
our results@6,7# on the optimal capacity of graded-respon
perceptrons in the framework of the Gardner theory@10#. On
the other hand, the relevant cost functions used in our an
sis here define a perceptron and an adaline learning a
rithm, which are both of special practical interest.

The underlying idea of the GD analysis is to view lear
ing in these perceptrons as an optimization process in
space of couplings. By introducing soft non-negative er
measures we investigate the canonical ensemble gene
by the corresponding cost function in the space of coupli
using the replica method. In this discussion we allow fo
limited output precision in the storage task to be solved
the perceptron. In particular, a linear and a quadratic e
measure are investigated. The corresponding cost funct
define, respectively, a perceptron and an adaline learning
gorithm through the method of gradient descent. Repli
symmetric ~RS! and first-step replica-symmetry-breakin
~RSB! solutions for the storage capacity, the average ou
error, and the local field distributions are studied. For co
parison we also derive the results for the rigid GD er
measure that simply counts the number of errors. One of
specific aims of this work is to determine which cost fun
tion is the most efficient one for learning with errors.

For the case of two-state attractor neural networks

*Also at Interdisciplinair Centrum voor Neurale Netwerken, K.
Leuven, Leuven, Belgium.
PRE 591063-651X/99/59~3!/3386~16!/$15.00
ng
a-
in
of

l

p-

ds

ly-
o-

-
e
r
ted
s

a
y
r

ns
al-
-

ut
-
r
e

-

e

canonical ensemble approach advocated in Ref.@9# has been
streamlined and extended to other cost functions than
rigid one@11#. The methods and results obtained there are
course, also relevant for perceptron networks. First-step R
effects above the critical capacity have then been studie
@12# for binary perceptron networks with a GD cost functio
and have been extended to other cost functions@13,14#. Re-
cently, it has been shown@15# for the GD cost function that
in the region above the critical capacity full RSB is nece
sary for an exact solution. A direct evaluation of the two-st
RSB solution has been performed in this case, yieldin
minimum storage error only slightly greater than the on
step RSB. The conclusion was put forward that for m
practical purposes one-step RSB will be adequate. In
study we also want to find out whether a similar conclus
is valid for the problem at hand.

The rest of this paper is organized as follows. In Sec
we briefly review the canonical approach adapted to
graded-response perceptron and introduce the different
functions we want to consider: the rigid one, the linear o
and the quadratic one. Section III contains the replica the
for these cost functions and determines the critical stor
capacity, the distribution of the local fields, and the avera
output error. Both the RS approximation and the first-s
RSB are treated for a general monotonic input-output re
tion. Section V describes the results of this theory applied
two specific, frequently used input-output relations, i.e.,
hyperbolic tangent and the piecewise-linear one. These
sults are compared with some numerical simulations. In S
V the most important results are summarized. Finally,
Appendix contains the technical details of the derivations

II. CANONICAL ENSEMBLE APPROACH

The task to be solved by the graded-response percep
is to map a collection of input patterns$j i

m ;1< i<N%, 1
<m<p, onto a corresponding set of outputszm, 1<m<p,
via

zm5g~ghm!, ~1!

hm5
1

AN
(

j
Jjj j

m . ~2!
3386 ©1999 The American Physical Society



is
E

re
e

rn

-
he

th
e
ut

d

b

he
r
d
nc
th
b
E

th

n

tr
ca

rns
y is

y
-
uch

ep-

ysis

d in

the
e

e

PRE 59 3387CANONICAL ENSEMBLE APPROACH TO GRADED- . . .
Hereg is the input-output relation of the perceptron, which
assumed to be a monotonic nondecreasing function. In
~1! g denotes a gain parameter, andhm is the local field
generated by the inputs$j i

m% as specified in Eq.~2!. The Jj

are couplings of an architecture of perceptron type. We
strict our attention to general unbiased input patterns sp
fied by ^j i

m&50 and^j i
mj j

n&5dm,nd i , jC. These two param-
eters are sufficient in specifying the input patte
distribution. Since the effect ofC in Eq. ~1! can be absorbed
in the gain parameter we takeC51 in the sequel.

We explicitly allow a limited output precision in the map
ping ~1!. In other words the output that results when t
input layer is in the state$j i

m% is accepted if

g„g~hm!…PI out~zm,e![@zm2e,zm1e#, m51, . . . ,p,
~3!

wheree denotes the allowed output-error tolerance.
The strategy of the canonical approach is to require

graded-perceptron network to go through a learning stag
the space of couplings in order to find for the absol
minima of a given cost functionE($hm%,$zm%) precisely net-
works with the properties~3!. This cost function is assume
to be a sum of local terms for each patternm,

E~$hm%,$zm%!5(
m

V~hm,zm!. ~4!

The different cost functions that will be studied here can
put into the form

V~hm,zm!5Ws„z
m2e2g~ghm!…1Ws„g~ghm!2zm2e…,

~5!

where

Ws~x!5xsu~x!, ~6!

andu(x) is the Heaviside step function. Fors50 we get the
GD cost function, which simply counts the number of t
errors, irrespective of their size. Moreover, we conside
linear cost function (s51), where the errors are weighte
proportionally to their magnitudes and a quadratic cost fu
tion (s52) where the errors are weighted proportional to
square of their magnitudes. The relevance of this choice
comes clear when applying gradient descent dynamics to
~4! with the result

DJj5
sgd

AN
(
m

S j j
m2

Jjh
m

AN
D @Ws21„z

m2e2g~ghm!…

1Ws21„g~ghm!2zm2e…#g8~ghm!, ~7!

where the prime denotes the derivative with respect to
argument. Takings51 (s52) in this expression, we find
the perceptron~adaline! learning algorithm with step sized
for the graded perceptron. The GD cost function does
correspond to any learning algorithm.

III. REPLICA THEORY

The physical properties of the graded-response percep
network defined above are derived by investigating the
q.
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nonical ensemble generated by the free energy

f ~b!52 lim
N→`

1

Nb
ln Z, ~8!

whereZ is the partition function

Z5E )
j

dJj)
j

dS (
j

Jj
22NDexp@2bE~$hm%,$zm%!#.

~9!

In Eq. ~9! the mean spherical constraint( iJi
25N is adopted

to fix a scale for the gain parameterg of the input-output
relation. We are interested in the limitb→` in which the
free energy gives information about the fraction of patte
that are stored incorrectly. In the usual way the free energ
assumed to be self-averaging with respect to the inputs$jm%
and the outputs $zm%. This average, denoted b
^ f (x)&$jm%,$zm%[^ f &, can be performed by applying the rep
lica trick. The standard order parameter that appears in s
a replica calculation is the overlap between two distinct r
licas in coupling space,

qll8[
1

N(
i 51

N

Ji
lJi

l8 l,l8, l,l851, . . . ,n. ~10!

Elsewhere we consider both the replica symmetry anal
and the one-step breaking effects~RSB1!. We also suppress
the indexm.

In the RS analysis we assume that

qll85q, l,l8. ~11!

The optimal capacity properties of the system are obtaine
the limit b→`, q→1, with b(12q)5x taking a finite
value. In this limit, a standard calculation analogous to
binary perceptron problem@9,11# leads to the averaged fre
energy,

^ f &5extrxH 2
1

2x
1aK E Dt min

h
@FRS~h,z,x,t !#L

$z%
J ,

~12!

with

FRS~h,z,x,t !5V~h,z!1
~h2t !2

2x
, ~13!

and whereDt5(dt/A2p)exp(2t2/2), a5p/N denotes the
storage capacity, and̂•••&$z% indicates the average over th
distribution of the output patterns.

Let us denote byh0(z,x,t) the value ofh that minimizes
F(h,z,x,t). For a determined storage capacitya the variable
x is given by the saddle-point equation]^ f &/]x50, which
can be rewritten in the form

aRS
215 K E Dt†h0~z,x,t !2t‡2L

$z%

. ~14!
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We immediately remark that these results are not alw
stable against RSB. Following standard considerati
@9,16,17# the stability condition reads

aRSK E DtF d

dt
@h0~z,x,t !2t#G2L

$z%

,1. ~15!

For the exact mapping task wheree50 the result found in
@6# for the critical storage capacity corresponding to the G
cost function is retrieved when we take the limitx→` in Eq.
~14!

ac
21511^hz

2&$z% , ~16!

with

hz5
1

g
g21~z!. ~17!

Similar to binary networks@11,13#, ac is the same for all
cost functions. Clearly, fora.ac errors will be introduced
that depend both in quantity and in size on the specific c
function used. An interesting expression to look at in t
respect is the distribution of local fields since it provid
more information on the deviation of the errors from t
correct outputz. For a given desired outputz, it is defined as

r~huz!5K dS h2
1

AN
(
j 51

N

Jjj j D L
$J%,$j%

, ~18!

where the thermal average overJ is taken subject to the
mean spherical constraint introduced before. Following K
pler and Abbott@18#, we find for the graded perceptron

rRS~huz!5E Dtd„h2h0~z,x,t !…. ~19!

An overall measure of the network performance is given
the average output error

E5^E~z!&$z% , ~20!

where thez-dependent output errorE(z) is given by

E~z!5E dhrRS~huz!@W1„z2e2g~gh!…

1W1„g~gh!2z2e…#. ~21!

From the results in the literature on the binary percept
problem @12,13,15# and from our former studies on th
graded perceptron system@6,7# we expect RSB effects. S
we want to improve the RS results by applying the first s
of Parisi’s RSB scheme@19#. We, therefore, introduce th
following order parameters:

qll85qb1b2

a1a25H q1 , if a15b1 ,

q0 , if a1Þb1 ,
~22!

where a1 ,b151, . . . ,n/m;a2 , b251, . . . ,m and 1<m
<n. We remark that in the limitn→0, 0<m<1.

Similar to @13# we find after a standard but tedious calc
lation that in the limitq1→12,m→0 and 0<q0<q1 with
s
s

st
s

-

y

n

p

m/(12q1)5M a finite value andx5b(12q1), the free en-
ergy averaged with respect to the inputs$j% and the outputs
$z% can be written as

^ f &5 lim
b→`

max
x,q0 ,M

H 2
1

2Mx
ln@11M ~12q0!#

2
q0

2x@11M ~12q0!#

2
a

Mx K E Dt0ln C~z,x,q0 ,M ,t0!L
$z%

J ~23!

with

C~z,x,q0 ,M ,t0!

5E Dt1exp$2Mx min
h

FRSB1~h,z,x,q0 ,t0 ,t1!%

~24!

and

FRSB1~h,z,x,q0 ,t0 ,t1!5V~h,z!

1
1

2x
~h2t0Aq02t1A12q0!2.

~25!

For a chosen storage capacitya, the variablesx, q0 , andM
are given by the saddle point equations]^ f &/]x
50, ]^ f &/]q050, and]^ f &/]M50.

The first-step RSB distribution for the local fields corr
sponding to patternz becomes

rRSB1~h,z!

5E Dt0E Dt1

3
exp@2MxFRSB1~h0 ,z,x,q0 ,t0 ,t1!#d~h2h0!

C~z,x,q0 ,M ,t0!
,

~26!

whereh05h0(z,x,q0 ,t0 ,t1) is the value ofh that minimizes
FRSB1(h,z,x,q0 ,t0 ,t1). The average output error in RSB
approximation is obtained by replacing expression~19! by
~26! in ~21!.

IV. RESULTS FOR SPECIFIC COST FUNCTIONS

The theory outlined in the last section has been applie
the specific cost functions defined in Eqs.~5! and~6!. For the
input-output relationg we have used both the hyperbol
tangent and the piecewise-linear function

g~x!5H x, for uxu,1,

sgn~x!, elsewhere.
~27!

A priori, our aim is not to compare the macroscopic prop
ties of graded-perceptrons for the two different input-outp
relations since, in general, they are qualitatively the same
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fact, the results obtained here are complementary. For
hyperbolic tangent input-output relation the RS solution
found to be stable over an important range of values for
parametersa andg while in the case of the piecewise-line
input-output relation the RS solution is always unstab
However, from a more technical point of view in the case
the hyperbolic tangent function, the mimimization ofFRS in
the corresponding averaged RS free energy with respe
the local fieldh @recall Eqs.~12! and ~13!# only leads to an
equation definingt as a function of the minimizing valueh0
~see the Appendix!. This equation needs to be inverted b
depending on the values ofg2x and z the inverse function
may be multiple valued and hence a~sometimes very te-
dious! Maxwell construction is required in order to make
single valued. Consequently, only the RS solution is stud
in detail in this case. On the contrary, the piecewise-lin
input-output relation permits an explicit calculation of th
minimizing valuesh0(z,x,t) and h0(z,x,q0 ,t0 ,t1) of the
functionsFRS andFRSB1 in the corresponding averaged fre
energies. This, in turn, simplifies drastically the calculatio
and both the RS and RSB1 solutions are completely wor
out in this case.

At this point, we remark already that the Maxwell co
struction in the hyperbolic tangent case gives a discontin
in h0(t) having an effect on the stability of the RS solutio
Similarly, due to the fact that the piecewise-linear inp
output relation is not everywhere differentiable a gap str
ture in the distribution of the local fields emerges signal
the instability of the RS solution@17#. The effects of RSB for
the cost functions~5! and ~6! are found to be important.

Elsewhere we present the results of our calculations b
for the hyperbolic tangent and the piecewise-linear inp
output relations. In order not to interrupt the line of reaso
ing we refer all technical details of the calculations to t
Appendix.

A. Hyperbolic tangent input-output relation

In this subsection we compare the performance of
three cost functions defined in Eqs.~5! and ~6! by studying
their average output error,E @recall Eq.~20!#. Our strategy is
to consider a linear (s51) and quadratic (s52) ‘‘entirely
soft’’ cost function versus a ‘‘completely rigid’’ one (s
50). Soft means that we do not fix the output-error tol
ancee, since some outputs might be far away from the c
rect outputz. Entirely soft indicates that we work withou
tolerance at all by puttinge50. For the completely rigid cos
function, e was determined in the function of the loadin
capacitya, by solving ~for e) the optimal capacity for the
graded perceptron in the microcanonical approach$recall Eq.
~9! of Ref. @6#%. We remark that the rigid output error tole
ance is almost constant for the wholeg interval considered.
We havee.0.105, e.0.225, ande.0.553, respectively,
for E50.1, E50.2, andE50.4. The output distribution is
taken to be uniform in the interval@21,1#.

The results are presented in Figs. 1 and 2. First, we s
in Figs. 1~a!–1~c! the loading capacitya as a function of the
gain parameterg for a constant average output errorE
50, 0.1, and 0.2 in the case of the three cost functions.
the rigid cost function, we plot an additional curve forE
50.4 to indicate that the capacity has a maximum for fin
he
s
e

.
f

to

t

d
r

s
d

ty

-
-

th
t-
-

e

-
-

w

or

e

g. For smallE values, the peak is also present, but it is le
pronounced and shifted towards higherg values, similarly as
in Ref. @6#. In the case of both the linear and the quadra
cost functions no maximum is found for a finite gain para
eter.

Next, it is interesting to discuss the main features rela
to the de Almeida–Thouless~AT! line, aAT , also shown in
these figures for the three cost functions. As seen in Fig.~a!
for the rigid cost function,aAT decreases monotonically wit
g, similarly as in Ref.@6#. The RS solution is stable in th
~connected! region below this line. For both the linear an
the quadratic cost functions,aAT is no longer a monotoni-
cally decreasing function ofg. Whena becomes larger than
ac , the patterns are stored in such a way that, as discu
below, a ‘‘gap’’ structure arises in the distribution of th
local fields, for all values ofg. It is well known@17# that this
gap destabilizes the RS solution, and consequently RS
required immediatly above the lineac(g). For a,ac , the
network is not saturated, there is no gap in the distribution
the local fields, and the RS solution is stable. Furthermo
for a much larger thanac , and sufficiently smallg, the gaps
are being filled up, and the RS solution eventually becom
stable. Consequently, there is a RS-stable region also a
ac , but it is disconnected from that belowac @see Figs. 1~b!
and 1~c!#. It is important to repeat that the region of instab
ity between the two stable regions has its origin in the g
structure. Conversely, we recall that for the rigid cost fun
tion there are no gaps. For allg values, there is always a
finite interval aboveac where the RS solution is stable. Th
is the reason why the stability region in this case is co
nected, with theaAT line extending up tog→`.

It is seen that the rigid cost function has the worst perf
mance for all values ofg. For both the linear and the qua
dratic cost function a monotonically increasing~but
bounded! capacitya results. In general, the linear cost fun
tion has the best performance. This behavior of the gra
perceptron network can be understood in terms of the ‘‘st
egy’’ used by a specific cost function to arrange the lo
fields when learning the patterns. The rigid cost function p
all local fields in a connected interval, thereby minimizing
width. It does not try to optimize the learninginside the
interval in order to decrease the average output error. H
ever, the linear and quadratic soft cost functions do optim
their performance by penalizing the errors linearly or qu
dratically with their size. They try to arrange the local fiel
in a close region around the valuehz resulting in the correct
outputz under the action of the input-output relation. In bo
cases the resulting distribution of the local fields show
sharp peak~a d peak in the linear case! at hz , and decreasing
tails. A gap in between can occur. The tails of the quadra
cost function decrease faster than those of the linear
function. We will present figures below for the case of t
piecewise-linear input-output relation where a similar beh
ior has been found. It is worth remarking that the linear c
function shows a somewhat improved behavior compare
the quadratic one. This may be justified by recalling th
according to Eq.~21!, the output error is the linear distanc
between the actual and the correct output, and this is exa
the quantity that is minimized by the linear cost function.
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FIG. 1. Storage capacitya for the hyperbolic tangent input-output relation as a function of the gain parametersg at constant total averag
output errorE50 ~lower curve!, 0.1, 0.2, and 0.4~upper curve! for the GD cost function~a!, the linear cost function~b!, and the quadratic
cost function~c!. In ~b! and ~c! the line forE50.4 is not shown. The dotted curve is the AT line. The curveac is the critical capacity.
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other words, the linear cost function is suitably designed
minimize the output error.

Let us discuss then in more detail the gap structure of
local fields, revealed by the lineag in Figs. 2~a! and 2~b!.
For the rigid cost function, no gaps are present, since
output tolerancee is chosen such thatall fields are inside a
connected interval. For the linear and quadratic cost fu
tions Figs. 2~a! and 2~b! present the relevant results in th
(a-g) plane. A gap is present in the region between the li
o

e

e

c-

s

ac ~for E50) and ag . For a,ac , the perceptron is no
saturated, i.e.,q,1 and the present calculations do not cov
this region. We notice that for smalla the gap line lies very
close to the AT line. A similar behavior has been noticed
binary networks trained with noisy patterns@20#. For grow-
ing a>ac , the width of the gaps decreases from an infin
value at ac to become zero asa approachesag . In the
region betweenag and aAT there are no gaps, but the R
solution remains unstable.
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Concerning the stability of our results with respect to R
breaking, we see that for the rigid cost function the curv
for the capacity as a function of the gain parameter at c
stant average output error are ‘‘stable’’ starting fromg50
up to the point where the curves reach their maximum~in
agreement with the results of@6# for constant output-erro
tolerance!. For the linear cost function, the RS curves a
stable for smallg and not so smallE. However, for the

FIG. 2. The gap structure for the hyperbolic tangent inp
output relation in thea-g plane for the linear cost function~a! and
the quadratic cost function~b!. The curveac is the critical capacity,
the curveag represents the gap line, andaAT is the AT line.
s
-

quadratic cost function all the curves for the hyperbolic ta
gent input-output relation are RS unstable.

The origin of instability against RS breaking fluctuatio
is relatively easy to understand in the region where gap
the local field distribution are present@11,17,21#. One can
argue that it is not possible to pass continuously from o
replica of the system where a specific pattern is learned
one ‘‘band’’ of the local fields, to another replica where th
pattern is learned in another band. The corresponding s
tions are disconnected in the space of replicas, and the o
lap between pairs of replicas cannot be the same for all pa
contrary to the RS assumption. In the region where there
no gaps this argument is no longer valid. Here, one m
argue that spreading the local fields over one single but w
band can also disrupt the space of replicas. Maybe the no
of critical bandwidth is relevant here. This could be an int
esting subject for further study.

B. Piecewise-linear input-output relation

For the piecewise-linear input-output relation we do co
sider a nonzero output-error tolerancee, i.e., all the inputs
whose corresponding output lie inside the interval@z2e,z
1e# do not contribute to the average output error. As o
lined before the numerical calculations are easier than th
for the hyperbolic tangent, and the study of the RSB1 so
tion in some detail becomes feasible. Numerical results
well as simulations are discussed fore50.5.

Before passing to these results, it is worth mentioning t
the introduction of a fixede allows us to replace the study o
the s50 cost function with a completely rigid constrain
discussed in Sec. IV A, by a true GD cost function@~5! and
~6! for s50].

In Figs. 3~a! and 3~b! we see both the RS and the RSB
average output errorE as a function of the loading capacitya
for g51 for the three cost functions considered. Figure 3~a!
concerns the GD~dotted curves! and quadratic~full curves!
cost functions, Fig. 3~b! the linear one. For all cases th
upper curves are the RSB1 results, so as expected,ERSB1
.ERS for all a.ac . For comparison, simulations were pe
formed for networks withN5200, 400 both for the linear
and quadratic cost functions. At this point we remark that
GD cost function does not correspond to any learning al
rithm. The circles ~diamonds! denote the N5200 (N
5400) results. The agreement with the analytic results
satisfactory in the sense that we know that the overall ov
estimate of the average output error is due to a very s
convergence to the minimum of the free energy, even us
some straightforward techniques of simulated anneal
Much more sophisticated versions of the latter should
used but this is not the purpose of the present work.

In the region of the network parameters considered,
linear cost function gives the best performance. According
the RSB1 results, the least efficient is the quadratic c
function if a,4.8, and the GD cost function elsewhere.

Figure 4 showsa as a function ofg at constantE. For
each cost function, the upper~lower! curve corresponds to
the RS~RSB1! result. For allg the highest capacity is given
by the linear cost function and forg,62.5, the quadratic
cost function gives the lowest capacity.

-
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The reason why the performance of thes52 quadratic
cost function is worse here is based on the fact that wit
nonzeroe, the average output error decreases. The curves
the hyperbolic tangent input-output relation are all forE
<0.4, while for the piecewise-linear input-output relation w

FIG. 3. The total average output errorE as a function of the
storage capacitya for output tolerancee50.5 and gain paramete
g51 in the case of the piecewise-linear input-output relation for~a!
the GD cost function~dotted lines! and the quadratic cost functio
~solid lines!, and ~b! the linear cost function. For each case t
upper curve is the RSB1 result, the lower one the RS result.
merical simulations of the quadratic cost function in~a! and the
linear cost function in~b! are indicated as circles (N5200) and
diamonds (N5400). Error bars are shown.
a
or

have studied the caseE50.05. In the latter, we are closer t
the critical capacity. From these calculations one might c
clude that the relative performance of the different cost fu
tions depends also on the amount of errors. In other word
matters how far one is beyond the critical capacity and
quadratic cost function performs better in the high-a regime.

In order to discuss in more detail the effects of RSB,
have studied the distribution of the local fields for the thr
cost functions. As an illustrative example, we present
Figs. 5~a!–5~c! the RS and RSB1 distributions for the sp
cific parametersa55, g51, e50.5, andz50.6. In general
terms, the discussion above concerning the RS local fi
distribution for the hyperbolic tangent input-output relatio
remains valid. For the RSB1 distribution, the following h
to be remarked. In the case of the GD and the linear c
function the coefficients of thed-part in the RSB1 local field
distributions become smaller. To give an idea about t
change we mention that, e.g., for the GD cost function@recall
Eqs. ~A5! and ~A12!#, for the parameters mentioned abov
at h50.1 these coefficients are 0.415 for the RS solut
versus 0.194 for the RSB solution. Similarly for the qu
dratic cost function the maximum in the distribution d
creases. Furthermore for the three cost functions, the c
tinuum part of the distribution is more populated for th
RSB1 than for the RS solution, and the width of the gaps
smaller. Finally, RSB effects in the local field distributio
are less pronounced for the quadratic cost function.

The distribution of the local fields resulting from simula
tions of networks withN5200 are also shown on these Fig
5~b! and 5~c! for, respectively, the linear and quadratic co

u-

FIG. 4. Storage capacitya for the piecewise-linear input-outpu
relation as a function of the gain parameterg for an output toler-
ancee50.5 and a total average output errorE50.05 for the GD
cost function~solid lines!, the linear cost function~dashed curves!,
and the quadratic cost function~dotted curves!. For each case the
upper curve is the RS result, the lower one the RSB1 result.
dashed-dotted curve is the critical storage capacity.
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FIG. 5. Distribution of the local fields for the piecewise-linear input-output relation anda55, g51, e50.5 and the correct outputz
50.6 for the GD cost function~a!, the linear cost function~b!, and the quadratic cost function~c!. The dotted curves are the RS results, t
solid lines the RSB1 results. In~b! and ~c! the histograms are results from numerical simulations with (N5200).
th
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functions. In both cases, a very good agreement with
RSB1 local field distributions obtained analytically is o
served. This result extends the observation of@15# that an
RSB1 treatment is adequate for the calculation of the stor
error to the calculation of local field distributions.

V. CONCLUDING REMARKS

In this paper we have studied the canonical ensemble
proach to the optimal capacity of graded-response per
trons with a hyperbolic tangent and a piecewise-linear inp
e

ge

p-
p-
t-

output relation for three different cost functions: th
Gardner-Derrida cost function that simply counts the num
of errors irrespective of their sizes, the linear cost funct
where the errors are weighted proportionally to their mag
tudes and the quadratic cost function where the errors
weighted proportionally to the square of their magnitud
Through the method of gradient descent the last two c
functions define, respectively, a perceptron and an ada
learning algorithm.

Results have been obtained for the storage capacity
function of the gain parameter, for the distribution of th
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local fields and for the average total output error above c
cal capacity in both RS and RSB1 approximations. Simu
tions for linear and quadratic cost functions have been p
formed. Here we summarize the main properties of the th
cost functions.

In the whole range of parameters, the most efficient c
function is the linear one. This is not surprising, since it
most suited to minimizing linear deviations from the corre
output. At small to intermediate loadinga, the quadratic cos
function is the least efficient. At high loading its efficienc
increases in comparison with the GD cost function. The re
tive ordering between the linear and quadratic cost functi
has been confirmed by numerical simulations.

In agreement with standard results~see, e.g.,@17#! it is
seen that whenever the distribution of the local fields d
plays a gap the RS saddle point is certainly unstable. A m
refined discussion of this RS instability has been possibl
the a-g plane showing, e.g., that the instability stays in
gions of the network parameters where no gap occurs
that RS stability can be restored for smallg.

First-step RSB results have been obtained and it is s
that already for a small, fixed average total output error~and
an output tolerance of 0.5) the capacity is overestimate
RS by typically about 10%. Furthermore, also the local fi
distributions are changed considerably due to RSB1 effe
in agreement with earlier findings@7#. From Ref. @15# we
know that although for the binary perceptron with t
Gardner-Derrida cost function an exact solution for the s
age error above critical capacity requires full RSB, one-s
RSB may be considered sufficient. In a similar way we ha
shown here that also for the local field distributions the fir
i-
-
r-
e

st

t

-
s

-
re
in
-
nd

en

in

ts,

r-
p
e
-

step RSB results are in remarkable agreement with the
tributions obtained by numerical simulations. This is one
the important outcomes of this work which, we believe, m
be extended to other systems.
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APPENDIX: THEORY FOR SPECIFIC COST FUNCTIONS

In this appendix we apply the general theory discussed
Sec. III to the specific cost functions~5! and~6!. In particular
we study the RS solutions for the hyperbolic tangent inpu
output relation and both the RS and RSB1 solutions for
piecewise-linear input-output relation defined in Eq.~27!.

1. GD cost function

In the case of the GD cost function with output toleran
e the results presented here are valid, of course, for b
input-output relations considered, by taking in the end
relevant expression forg21(z2e). In the case of the RS
treatment, the minimum inh of Eq. ~13! is given by
h05t, FRS~h0 ,z,x,t !51, for 2`,t, l 2A2x,

h05 l , FRS~h0 ,z,x,t !5
~ l 2t !2

2x
, for l 2A2x,t, l ,

h05t, FRS~h0 ,z,x,t !50, for l ,t,u,

h05u, FRS~h0 ,z,x,t !5
~u2t !2

2x
, for u,t,u1A2x,

h05t, FRS~h0 ,z,x,t !51, for u1A2x,t,`, ~A1!
-
where

l 5H 1

g
g21~z2e!, if z2e.21,

2`, elsewhere

~A2!

and

u5H 1

g
g21~z1e!, if z1e,1,

`, elsewhere.

~A3!
From Eqs.~14! and ~A1!, we obtain the saddle-point equa
tion

aRS
215K E

l 2A2x

l

Dt~ t2 l !21E
u

u1A2x
Dt~ t2u!2L

z

.

~A4!

Combining Eqs.~19! and~A1!, the distribution of local fields
becomes
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r~h,z!5
e2~h2/2!

A2p
@u~ l 2A2x2h!1u~h2 l !2u~h2u!

1u~h2u2A2x!#1d~h2 l !E
l 2A2x

l

Dt

1d~h2u!E
u

u1A2x
Dt. ~A5!

The RS output error is obtained from Eqs.~21! and ~A5!:

E~z!5gF S l 1
1

g D E
2`

h1
Dh1E

h1

l 2A2x
Dh~ l 2h!

1E
u1A2x

h2
Dh~h2u!1S 1

g
2uD E

h2

2`

DhG , ~A6!

where

h15minS l 2A2x,2
1

g D ~A7!

and

h25maxS u1A2x,
1

g D . ~A8!

For the RSB1 solution we geth0(z,x,q0 ,t0 ,t1) and
FRSB1(h0 ,z,x,q0 ,t0 ,t1) from h0(z,x,t) andFRS(h0 ,z,x,t),
respectively, by substitutingt by t0Aq01t1A12q0 in Eq.
~A1!. The functionC(z,x,q0 ,M ,t0) in Eq. ~24! becomes

C~z,x,q0 ,M ,t0!

5e2MxE
2`

V~ l 2A2x,q0 ,t0!
Dt1

1E
V~ l 2A2x,q0 ,t0!

V~ l ,q0 ,t0!

Dt1F~ l ,M ,q0 ,t0 ,t1!

1E
V~ l ,q0 ,t0!

V~u,q0 ,t0!

Dt1

1E
V~u,q0 ,t0!

V~u1A2x,q0 ,t0!
Dt1F~u,M ,q0 ,t0 ,t1!

1e2MxE
V~u1A2x,q0 ,t0!

`

Dt1 , ~A9!

where
V~v,q0 ,t0!5
v2t0Aq0

A12q0

~A10!

and

F~v,M ,q0 ,t0 ,t1!5exp$2 1
2 M ~12q0!@V~v,q0 ,t0!2t1#2%.

~A11!

The averaged free-energy is obtained by plugging this
pression into Eq.~23!. Expression~26! then leads to the
z-dependent distribution of local fields,

r~h,z!5E Dt0

C~z,x,q0 ,M ,t0!

3H expF2
1

2
V2~h,q0 ,t0!G

A2p~12q0!
@e2Mxu~ l 2A2x2h!

1@u~h2 l !2u~h2u!#1e2Mxu~h2u2A2x!#

1d~h2 l !E
V~ l 2A2x,q0 ,t0!

V~ l ,q0 ,t0!

Dt1F~ l ,M ,q0 ,t0 ,t1!

1d~h2u!E
V~u,q0 ,t0!

V~u1A2x,q0 ,t0!
Dt1F~u,M ,q0 ,t0 ,t1!J .

~A12!

Finally, thez-dependent RSB1 output error is given by com
bining Eqs.~26! and ~A12!:

E~z!5E Dt0

C~z,x,q0 ,M ,t0!

ge2Mx

A2p~12q0!

3H S l 1
1

g D E
2`

h1
dh1E

h1

l 2A2x
dh~ l 2h!

1E
u1A2x

h2
dh~h2u!1S 1

g
2uD E

h2

`

dhJ
3exp@2 1

2 V2~h,q0 ,t0!#, ~A13!

with h1 andh2 defined in Eqs.~A7! and ~A8!, respectively.

2. Linear cost function

Let us start by considering the RS approximation first. F
the piecewise-linear input-output relation the minimizati
in h of Eq. ~13! can be done explicitly leading to the follow
ing result:
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h05t, FRS~h0 ,z,x,t !5gS l 1
1

g D , for 2`,t,h1 ,

h05gx1t, FRS~h0 ,z,x,t !5gS l 2
gx

2
2t D , for h1,t,h2 ,

h05 l , FRS~h0 ,z,x,t !5
~ l 2t !2

2x
, for h2,t, l ,

h05t, FRS~h0 ,z,x,t !50, for l ,t,u,

h05u, FRS~h0 ,z,x,t !5
~u2t !2

2x
, for u,t,h3 ,

h052gx1t, FRS~h0 ,z,x,t !5gS 2u2
gx

2
1t D , for u,t,h4 ,

h05t, FRS~h0 ,z,x,t !5gS 1

g
2uD , for h4,t,`, ~A14!
wherel andu are again given by the formulas~A2! and~A3!.
The variablesh1 , h2 , h3 , andh4 are defined as follows:

h15H l 2A2gxS l 1
1

g D , if l ,2
1

g
1

gx

2
,

2
1

g
2

gx

2
, elsewhere,

~A15!

h25H l 2A2gxS l 1
1

g D , if l ,2
1

g
1

gx

2
,

l 2gx, elsewhere,
~A16!

h35H u1A2gxS 1

g
2uD , if u.

1

g
2

gx

2
,

u1gx, elsewhere,

~A17!

h45H u1A2gxS 1

g
2uD , if u.

1

g
2

gx

2
,

1

g
1

gx

2
, elsewhere.

~A18!

The RS saddle-point equation is obtained from Eqs.~14! and
~A14!:
aRS
215K g2x2E

h1

h2
Dt1E

h2

l

Dt~ t2 l !21E
u

h3
Dt~ t2u!2

1g2x2E
h3

h4
DtL

z

. ~A19!

Using Eqs.~19! and ~A14!, the RSz-dependent distribution
of local fields becomes

r~h,z!5

expF2
h2

2 G
A2p

3@u~h12h!1u~h2 l !2u~h2u!1u~h2h4!#

1

expF2
~h2gx!2

2 G
A2p

@u~h2h28!2u~h2 l !#

1d~h2 l !E
h2

l

Dt1d~h2u!E
u

h3
Dt

1

expF2
~h1gx!2

2 G
A2p

@u~h2u!2u~h2h38!#,

~A20!

where
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h285H l , if l ,2
1

g
1

gx

2
,

2
1

g
1

gx

2
, elsewhere

~A21!

and

h385H u, if u.
1

g
2

gx

2
,

1

g
2

gx

2
, elsewhere.

~A22!

The RS average output error is obtained from Eqs.~21! and
~A20!:

E~z!5gF S l 1
1

g D E
2`

h1 dh

A2p
e2~h2/2!1E

h28

l

dhA2p

3expF2
~h2gx!2

2 G~ l 2h!

1E
u

h38 dh

A2p
expF2

~h1gx!2

2 G~h2u!

1S 1

g
2uD E

h4

2` dh

A2p
e2~h2/2!G . ~A23!

For the hyperbolic tangent input-output relation,hz given
by Eq. ~17! is always a local minimum of Eq.~13!. Other
local minima of Eq.~13! are defined as solutions of

S ]F~h,z,x,t !

]h D
h5h0

50 ~A24!

and they can no longer be determined analytically. The eq
tion

t~h0!5h01gxg8~gh0!sgn@g~gh0!2z# ~A25!

needs to be inverted in order to findh05h0(t) ~the prime
denotes the derivative with respect toh). Depending on the
value ofg2x, t(h0) is a monotonic function or not, and con
sequently invertible or not. The onset of nonmonotonicity
given by the system of equations
a-

s

dt

dh0
50,

d2t

dh0
2

50. ~A26!

If monotonicity holds,h0 is a solution of Eq.~A25! for t
,tz

2 or t.tz
1 , where tz

65hz6gxg8(ghz). If nonmonoto-
nicity holds, h0(t) has one or two jumps att5t1 and/or t
5t2 , whereby we assume thatt1,t2 . The values oft1 and
t2 are then determined using a Maxwell construction in
function t(h0). The number of jumps depends on the val
of g2x andz.

From Eq.~19! and from the inversion of Eq.~A25!, we
obtain the following expression for the distribution of th
local fields:

r~huz!5
dt

dh

expF2
t2~h!

2 G
A2p

1
1

2 FerfS t2

A2
D 2erfS t1

A2
D G

3d~h2hz!. ~A27!

If monotonicity holds, thent15tz
2 and t25tz

1 .
Due to the fact thathz is a global minimum of Eq.~13! in

the interval t1,t,t2 , t(h0) always displays a jump inh
5hz . This jump gives rise to the second term in the righ
hand side~r.h.s.! of Eq. ~A27!. If nonmonotonicity holds,
t(h0) shows plateaus att1 and t2 , leading to a gap structure
in the distribution of the local fields. The resulting discon
nuity in dh0 /dt causes a divergence of the l.h.s. of Eq.~15!.
This means that when nonmonotonicity holds, the RS so
tion is always unstable. In the case of monotonicity, the s
bility condition reads

aRSK E
2`

tz
2

DtS 1

g2xg9~gh0!
21D 22

1E
tz
1

`

DtS 1

g2xg9~gh0!
11D 22L

$z%

,1.

~A28!

Next we consider first step RSB for the piecewise-line
input-output relation. Similarly to the GD cost function w
substitutet by t0Aq01t1A12q0 in Eq. ~A14! in order to
obtain h0(z,x,q0 ,t0 ,t1) and FRSB1(h0 ,z,x,q0 ,t0 ,t1). The
free energy is obtained from Eq.~23! with the function
C(z,x,q0 ,M ,t0) @recall Eq.~24!# given by
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C~z,x,q0 ,M ,t0!5expF2MgxS l 1
1

g D G E
2`

V~h1 ,q0 ,t0!

Dt11expF2MgxS l 2
gx

2
2t0Aq0D G

3E
V~h1 ,q0 ,t0!

V~h2 ,q0 ,t0!

Dt1exp@Mgxt1A~12q0!#1E
V~h2 ,q0 ,t0!

V~ l ,q0 ,t0!

Dt1F~ l ,M ,q0 ,t0 ,t1!1E
V~ l ,q0 ,t0!

V~u,q0 ,t0!

Dt1

1E
V~u,q0 ,t0!

V~h3 ,q0 ,t0!

Dt1F~u,M ,q0 ,t0 ,t1!1expF2MgxS 2u2
gx

2
1t0Aq0D G E

V~h3 ,q0 ,t0!

V~h4 ,q0 ,t0!

Dt1

3exp@2Mgxt1A~12q0!#1expF2MgxS 1

g
2uD G E

V~h4 ,q0 ,t0!

`

Dt1 . ~A29!

The RSB1z-dependent distribution of the local fields~26! becomes

r~h,z!5E Dt0

C~z,x,q0 ,M ,t0!
H expF2MgxS l 1

1

g D2
1

2
V2~h,q0 ,t0!G

A2p~12q0!
u~h12h!

1

expF2MgxS l 1
gx

2
2hD2

1

2
V2~h2gx,q0 ,t0!G

A2p~12q0!
@u~h2h28!2u~h2 l !#uS l 1

1

g
2

gx

2 D1d~h2 l !E
V~h2 ,q0 ,t0!

V~ l ,q0 ,t0!

3Dt1F~ l ,M ,q0 ,t0 ,t1!1

expF2
1

2
V2~h,q0 ,t0!G

A2p~12q0!
@u~h2 l !2u~h2u!#1d~h2u!E

V~u,q0 ,t0!

V~~h3 ,q0 ,t0!

Dt1F~u,M ,q0 ,t0 ,t1!

1

expF2MgxS h2u1
gx

2 D2
1

2
V2~h1gx,q0 ,t0!G

A2p~12q0!
@u~h2u!2u~h2h38!#uS 1

g
2

gx

2
2uD

1

expF2MgxS 1

g
2uD2

1

2
V2~h,q0 ,t0!G

A2p~12q0!
u~h2h4!J . ~A30!

Finally, thez-dependent RSB1 average output error reads

E~z!5E Dt0

C~z,x,q0 ,M ,t0!

g

A2p~12q0!
H S l 1

1

g DexpF2MgxS l 1
1

g D G E
2`

h1
dhexpF2

1

2
V2~h,q0 ,t0!G

1E
h28

l

dh~ l 2h!expF2
1

2
V2~h2gx,q0 ,t0!2MgxS l 1

gx

2
2hD GuS l 1

1

g
2

gx

2 D
1E

u

h38dh~h2u!expF2
1

2
V2~h1gx,q0 ,t0!2MgxS h2u1

gx

2 D GuS 1

g
2

gx

2
2uD

1S 1

g
2uDexpF2MgxS 1

g
2uD G E

h4

`

dhexpF2
1

2
V2~h,q0 ,t0!G J . ~A31!

3. Quadratic cost function

Again we look at the RS treatment first. We start by defining

h15 l 2A112g2xS l 1
1

g D , ~A32!
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h25 l 2

l 1
1

g

A112g2x
, ~A33!

h35u1

1

g
2u

A112g2x
, ~A34!

h45u1A112g2xS 1

g
2uD . ~A35!

Using these definitions, the result of the minimization inh of FRS @Eq. ~13!# becomes

h05t, FRS~h0 ,z,x,t !5g2S l 1
1

g D 2

, for 2`,t,h1 ,

h05
2g2xl1t

112g2x
, FRS~h0 ,z,x,t !5g2

~ l 2t !2

112g2x
, for h1,t, l ,

h05t, FRS~h0 ,z,x,t !50, for l ,t,u,

h05
2g2xu1t

112g2x
, FRS~h0 ,z,x,t !5g2

~u2t !2

112g2x
, for u,t,h4 ,

h05t, FRS~h0 ,z,x,t !5g2S 1

g
2uD 2

, for h4,t,`. ~A36!
he
The RS saddle-point equation is obtained from Eqs.~14! and
~A36!:

aRS
215S 2g2x

112g2x
D K E

h1

l

Dt~ t2 l !21E
u

h4

Dt~ t2u!2L
z

.

~A37!

From Eqs.~19! and ~A36!, the RSz-dependent distribution
of the local fields becomes

r~h,z!5

expF2
h2

2 G
A2p

@u~h12h!1u~h2 l !2u~h2u!

1u~h2h4!#1~112g2x!

3H expH 2
1

2
@~112g2x!h22g2xl#2J

A2p

3@u~h2h2!2u~h2 l !#

1

expF2
1

2
@~112g2x!h22g2xu#2G

A2p

3@u~h2hu!2u~h2h3!#J . ~A38!
Consequently, the RSz-dependent output error becomes

E~z!5gH S l 1
1

g D E
2`

h1 dh

A2p
expF2

h2

2 G1~112g2x!

3E
h2

l

dhA2p expF @~112g2x!h22g2xl#2

2 G~ l 2h!

1~112g2x!E
u

h3
dhA2p

3expF2
@~112g2x!h22g2xu#2

2 G~h2u!

1S 1

g
2uD E

h4

2` dh

A2p
expF2

h2

2 G J . ~A39!

For the hyperbolic tangent input-output relation,hz ~recall
Eq. ~17!! is no longer a local minimum of Eq.~13!. The
minima are always given by the solutions of Eq.~A24!,
which definet(h0) as

t~h0!5h012gxg8~gh0!@g~gh0!2z#. ~A40!

Depending on the values ofg2x andz, t(h0) is a monotonic
function or not. The onset to nonmonotonicity is given by t
system of Eqs.~A26!. If monotonicity holds,h0(t) is con-
tinuous, and is obtained by inverting Eq.~A40!. Otherwise,
h0(t) displays one or two jumps att5t1 and/ort5t2 , whose
values are obtained by a Maxwell construction.
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The distribution of local fields is obtained directly from Eq.~19!,

r~huz!5
dt

dh

expF2
t2~h!

2 G
A2p

. ~A41!

When nonmonotonicity holds, the jumps inh0(t) give rise to a gap structure in the distribution of the local fields and the
solution becomes unstable. In the monotonic case the stability condition~15! reads

aRSK E
2`

1`

DtS 1

2g2x@„g8~gh0!…21„g~gh0!2z…g9~gh0!#
11D 22L

$z%

,1. ~A42!

Let us finally turn to the RSB1 treatment. Again, in order to obtainh0(z,x,q0 ,t0 ,t1) and FRSB1(h0 ,z,x,q0 ,t0 ,t1) we
substitute t by t0Aq01t1A12q0 in Eq. ~A14!. The free energy is obtained from Eq.~23!, whereby the function
C(z,x,q0 ,M ,t0), given by Eq.~24!, becomes

C~z,x,q0 ,M ,t0!5expF2Mg2xS l 1
1

g D 2G E
2`

V~h1 ,q0 ,t0!

Dt11E
V~h1 ,q0 ,t0!

h2 ,q0 ,t0)

Dt1FS l ,
2Mg2x

112g2x
,q0 ,t0D 1E

V~ l ,q0 ,t0!

V~u,q0 ,t0!

Dt1

1E
V~u,q0 ,t0!

h4 ,q0 ,t0)

Dt1FS u,
2Mg2x

112g2x
,q0 ,t0D 1expF2Mg2xS 1

g
2uD 2G E

V~u,q0 ,t0!

`

Dt1 . ~A43!

For the RSB1z-dependent distribution of the local fields we obtain

r~h,z!5E Dt0

C~z,x,q0 ,M ,t0!
H expF2MgxS l 1

1

g D2
1

2
V2~h,q0 ,t0!G

A2p~12q0!
u~h12h!

1

expF2MgxS l 1
gx

2
2hD2 1

2 V2~h2gx,q0 ,t0!G
A2p~12q0!

@u~h2h28!2u~h2 l !#1d~h2 l !E
V~h2 ,q0 ,t0!

V~ l ,q0 ,t0!

Dt1F~M ,l ,q0 ,t0 ,t1!

1
exp@2 1

2 V~h,q0 ,t0!#

A2p~12q0!
@u~h2 l !2u~h2u!#1d~h2u!E

V~u,q0 ,t0!

V~h3 ,q0 ,t0!

Dt1F~M ,u,q0 ,t0 ,t1!

1

expF2MgxS h2u1
gx

2 D2 1
2 V~h1gx,q0 ,t0!G

A2p~12q0!
@u~h2u!2u~h2h38!#

1

expF2MgxS 1

g
2uD2 1

2 V~h,q0 ,t0!G
A2p~12q0!

u~h2h4!J . ~A44!

The z-dependent RSB1 average output error becomes

E~z!5E Dt0

C~z,x,q0 ,M ,t0!

g

A2p~12q0!
H S l 1

1

g DexpF2Mg2xS 11
1

g D 2G E
2`

h1
dh exp@2 1

2 V2~h,q0 ,t0!#1~112g2x!

3E
h2

1

dh~12h!exp$2 1
2 V2@~112g2x!~h2 l !1 l ,q0 ,t0#2Mg2x~112g2x!~h2 l !2%1~112g2x!E

u

h3
dh~h2u!

3exp$2 1
2 V2@~112g2x!~h2u!1u,q0 ,t0#2Mg2x~112g2x!~h2u!2%1S 1

g
2uDexpF2Mg2xS 1

g
2uD 2G

3E
h4

`

dhexp@2 1
2 V2~h,q0 ,t0!#J . ~A45!



lt,

do

s.

PRE 59 3401CANONICAL ENSEMBLE APPROACH TO GRADED- . . .
@1# A. Treves, Phys. Rev. A42, 2418~1990!; J. Phys. A23, 2631
~1990!.

@2# C. M. Marcus and R. M. Westervelt, Phys. Rev. A40, 501
~1989!; C. M. Marcus, F. M. Waugh, and R. M. Westerve
ibid. 41, 3355~1990!.

@3# R. Kühn, in Statistical Mechanics of Neural Networks, Pro-
ceedings of the XIth Sitges Conference, edited by L. Garri
Springer Lectures Notes in Physics Vol. 368~Springer, Berlin,
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