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21. IntroductionSince the ground breaking work of Gardner [1] on the storage capacity of theboolean perceptron, the replica technique of statistical mechanics has been successfullyemployed to investigate many aspects of the performance of simple neural networkmodels. While most of the research concentrated on exploring the learning abilityand network capacity below saturation (for a review see [2, 3] and references therein),we will concentrate in this paper on the errors of a boolean perceptron above itssaturation limit, or capacity limit �c, working within a replica framework. Earlierstudies [4, 5, 6] have examined particularly the cases of zero stability of the storedpatterns, the e�ect of di�erent error functions on the error rates, and the distributionof pattern stabilities. Here, we will extend this work by allowing for a thresholdand biased input and output distributions and investigate both real valued (sphericalconstraint) and binary weights (Ising constraint).We �nd that the boolean perceptron with threshold has a rich behaviour reectingthe extra degree of freedom introduced by the threshold. In the case of arbitraryinput and output distributions we �nd that the threshold can always compensate fora ferromagnetic bias in the weights but not vice versa, which will allow us to arguethat the paradigm of eliminating the threshold in favour of a ferromagnetic bias in theweights, which has been adopted in some papers (e.g., [1, 7]), should be reconsidered.The introduction of a threshold enables the elimination of the input distribution bias,by suitably rescaling the threshold and stability.Especially intriguing is the role of the threshold for non-zero stability and unbiasedoutput distributions; above some critical pattern load �p, we �nd two solutions to thesaddle point equations: One solution has a non-zero threshold and a lower free energywith an asymptotic error rate of 50%, the other solution is identical to that of aperceptron without threshold and exhibits a higher free energy with an asymptoticerror rate above 50%. The order parameters show a second order phase transition atthe bifurcation point and have di�erent asymptotic values.This work is further motivated by the fact that the results of this calculationcan be applied iteratively to yield the storage capacity of a class of networks withvariable architecture produced by constructive algorithms [8, 9], which will be reportedelsewhere [10, 11]. This is possible since these algorithms construct the networkarchitecture during training, starting with a simple boolean perceptron and addingmore perceptrons only when needed, i.e., when the existing network is incapableof performing the requested task. The training is performed separately for eachperceptron after its creation and the weights are subsequently frozen. Therefore,results for the perceptron are su�cient to calculate the capacity limit of multi-layernetworks produced by certain constructive algorithms. So far, only an informationtheoretic upper bound has been derived for two-layer networks with �xed hiddenlayer to output weights [12]. Statistical mechanics calculations have been hamperedby the inherent di�culties of the replica calculation. Replica symmetric (RS)treatments [13, 14] violate the above mentioned upper (Mitchison-Durbin) bound.Other e�orts [15] break the symmetry of the hidden units explicitly prior to the actualcalculation, but the resulting equations are approximations and are di�cult to solvefor large networks.The paper is structured as follows. In Section 2 we introduce the model, theboolean perceptron with threshold (and spherical or Ising constraint) and correlatedoutput and input distributions. We briey explain the replica framework and outline



3the one-step replica symmetry breaking (RSB) calculations for the two constraintsfor both the free energy and distribution of pattern stabilities. This is followed inSection 3 by a discussion of the error rate and the pattern stability distribution of thetwo boolean perceptron models. We �nish with a discussion of the signi�cance of theresults and some concluding remarks in Section 4.2. Replica calculation of boolean perceptronIn this section we will outline the replica calculation for the boolean perceptron tryingto learn a set of random dichotomies above its saturation limit �c. The calculation issimilar to [4, 5] for real valued weights and a spherical constraint and to [6] for binaryweights, i.e., an Ising constraint; however, we allow for a threshold and biased outputand input distributions. In the following the real valued weight boolean perceptronwill be referred to as the spherical (boolean) perceptron, whereas the binary valuedweight boolean perceptron will be referred to as the Ising (boolean) perceptron. Thissection is divided into three parts. In Section 2.1, the replica calculation for the freeenergy of the perceptron above saturation is explained briey. In Section 2.2, the sameframework is then extended to calculate the distribution of pattern stabilities for theperceptron. In Section 2.3, we will outline the di�erences for the calculations of theIsing perceptron and present the resulting equations.2.1. Free energy of the spherical perceptronIn the capacity problem the aim is to adjust the parameters of a spherical perceptron,the synaptic weight vectorW 2 RN and threshold � 2 R, to minimise the error on a setof p = �N input-output mappings �� 2 f�1; 1gN ! �� 2 f�1; 1g (� = 1; : : : ; p) froman N{dimensional binary input space to binary targets. The output of the perceptronis hereby determined by�� = sgn� 1pNW:�� � �� = sgn(h�) (1)where sgn(x) is the sign of x, and h� is termed the activation of the perceptron. Wede�ne the error function to beE =X� � (�� ��) ; (2)where �� = ��h� and �(x) is the Heaviside step function, which is 1 for x > 0 and0 otherwise, and � is the stability with which we require the patterns to be stored.This error function, counting the number of misclassi�cations, is often referred to asthe Gardner-Derrida cost function.The calculation will be performed in the thermodynamic limit N !1 with �niteexample load � = p=N . In the following, we will be interested only in the minimumerror possible and will therefore consider zero-temperature Gibbs learning, i.e., weconsider the free energy f = ���1 logZ for � !1, which is assumed to be self-averaging in the thermodynamic limit. Hencehhfii = � lim�!1 limN!1 1N� hhlogZii = � lim�!1 limN!1 1N� ��log Z d�(W )e��E�� (3)



4where hh�ii is the quenched average over the distribution of patterns, consisting ofintegrations over biased input and output distributions. The binary input distributionis independent of the pattern and site indices � and j:P (��j ) = P (�) = 12(1 +mi)�(1� �) + 12(1�mi)�(1 + �) : (4a)The output distribution is also independent of the pattern index:P (��) = P (�) = 12(1 +mo)�(1 � �) + 12(1�mo)�(1 + �) ; (4b)where mi and mo represent the input and output bias respectively.Furthermore, in the case of real valued weights, we enforce a spherical constrainton the weight vectord�(W ) = �(W:W � N ) NYi=1dWi ; (5)to avoid the invariance (W ; �)! (�W ; ��). To be able to pick out the two possibleerror sources (wrongly on, where the requested target is �� = �1 but the outputis �� = 1 and wrongly o� , where �� = 1 but �� = �1), we introduce auxilliaryvariables �+; �� in the error function [Eq. (2)]E =X� � (�� ��) [���(��) + �+�(���)] =X� V (��; �; ��); (6)where V is the error measure for a single example and has been introduced forconvenience.y The derivatives of the free energy with respect to �+ or �� at�+ = �� = 1 will give us the wrongly on and wrongly o� errors respectively.To be able to perform the quenched average we make use of the replicatrick hhlogZii = limn!0(hhZnii � 1)=n. After application of standard techniques andintroduction of the order parameterszQ�� = 1NW �:W � (for � < �), M� = 1pN NXi=1W �i ; (7)their Lagrange multipliers Q̂��, M̂� and the Lagrange multiplier Ê� associated withthe spherical constraintx, the replicated partition function ishhZnii = Z 1�1 Z i1�i1 Y� dM�dÊ�2� ! Y�<� dQ��dQ̂��2� !� exp(N "G0(Q̂��; Ê�) + �Gr(Q��; ��;M�) + 12X� Ê� �X�<�Q��Q̂��#) ; (8)whereG0(Q̂��; Ê�) = log(Z 1�1Y� dW � exp"�12X� Ê�W �W � +X�<� Q̂��W �W �#) (9)y This is also consistent with earlier work[5] and allows in principle a calculation for an arbitrarycost function.z One could also allow � = �. In this case Q�� = 1 and Q̂�� = Ê� due to the spherical constraint.x The contribution of M̂� actually vanishes in the thermodynamic limit.



5is the prior constraint Hamiltonian andGr(Q��; �� ;M�) = log*Z 1�1 Y� d��d�̂�2� ! exp(��V (��; �; �)� iX� �̂����i�X� �̂�(�� �miM�)� 12(1�m2i )"X� �̂2� + 2X�<� �̂��̂�Q��#)+� (10)is the replicated Hamiltonian, and where h�i� denotes an average over the outputdistribution.2.1.1. The replica symmetric ansatz To make further progress one has to makean assumption for the structure of the replica space. The simplest assumption isthat replica symmetry holds (which is believed to correspond usually to a connectedsolution space): Q�� = q1 and Q̂�� = q̂1 (for � < �)M� =M; �� = � and Ê� = Ê (for all �) (11)Inserting the above ans�atze into Eqs. (9) and (10) and taking the n! 0 limit yieldsGRS0 =12 q̂1Ê + q̂1 � 12 log(Ê + q̂1)GRSr =�Z Dt log [FRS(t; �; q1; �; ��)]�� ; (12)where all integrals without explicit limits are from�1 to +1,Dt = dt exp(�t2=2)=p2�and the function FRS is given byFRS(t; �; q1; �; ��) = Z d�p2�(1� q1) exp��� �V (�; �; �) + ( +pq1 t)22x �� ; (13)where x = �(1 � q1) and (�) = � + �(� �miM )p1�m2i : (14)When taking the � !1 in order to access the ground state with least errors only, onehas to distinguish two regimes. Below the capacity limit �c (above which the trainingerror becomes strictly positive), q1 < 1 even for � !1. At and above the capacitylimit, q1 ! 1 for � !1, because the volume of the individual solution spaces vanishes.We therefore make the self-consistent ansatz for � � �c that x = �(1 � q1) remains�nite in the zero-temperature limit. In this case, the integral over � in (13) can becalculated by the saddlepoint method; the exponentional is evaluated at � = �0, where�0 minimises the square bracket for given t. After calculating �0(t) for the Gardner-Derrida cost function and eliminating q̂1 and Ê, the RS free energy at �+ = �� = 1simpli�es to: hhfRSii = �*Z p2x���� Dt (t + � )22x +H �p2x� ��+� � 12x; (15)



6where � =  (�) = �+ �(� �miM )p1�m2i ; and H(u) = Z 1uDt: (16)The free energy has to be evaluated at the saddlepoints with respect to the variablesx and �. The capacity limit �c can be calculated from the saddlepoint equations bytaking the limit x!1. A more detailed examination of the free energy and thesaddlepoint equations is deferred to Section 2.1.3.Above the capacity limit �c it is evident that di�erent solutions can misclassifydi�erent patterns and the solution space will in general be disconnected. It has alsobeen previously shown that in this case the replica symmetric saddle point is locallyunstable [16], and the Parisi scheme of successive steps of replica symmetry breaking(RSB) [17] must be employed.2.1.2. The one-step RSB ansatz Here, we will restrict ourselves to a one-step RSBcalculation. We note that it has been shown recently that for the spherical perceptronwith the Gardner-Derrida cost function in�nitely many RSB steps are necessary toderive the correct result [18]. Although one-step RSB is therefore incorrect it is avery good approximation, as a 2-step RSB calculation carried out for the sphericalperceptron without threshold yielded only minor corrections in the free energy [18].The ansatz for the one-step RSB is that Q�� is a n�n matrix(Q��)nn = 0BBBB@ Q1 Q0 � � � Q0Q0 . . . . . . ...... . . . . . . Q0Q0 � � � Q0 Q1 1CCCCAnn ; (17)where Q0 is a m�m matrix with elements q0 and Q1 is a m�m matrix with 0 on thediagonal and q1 elsewhere. The ansatz for Q̂�� has the same block structure as forQ�� with matrices Q̂0 and Q̂1. We further assumeM� =M; �� = � and Ê� = Ê (for all �); (18)similar to the RS case (11). The order parameters q1 and q0 can be interpreted asthe typical overlap between pairs of weight vectors in the same and di�erent solutionspaces respectively. Clearly, if the solution space is connected q0 � q1, which is thecase for � � �c, and we recover replica symmetry. Again using the above ans�atze inEqs. (9) and (10) and taking the n! 0 limit yieldsGRSB0 =12 q̂0(Ê + q̂1)�m(q̂1 � q̂0) � 12 log(Ê + q̂1) � 12m log�1� q̂1 � q̂0Ê + q̂1�GRSBr =�Z Dt 1m log [FRSB(t;m; �; q0; q1; �; ��)]�� ; (19)where the function FRSB is given byFRSB(t;m; �; q0; q1; �; ��) = Z Dz "Z d�p2�(1� q1) exp� � � �V (�; �; �)+ ( +pq0 t+pq1 � q0 z)22�p1� q1 ��#m ; (20)



7with  as in (14).Similar to the RS case, we are interested in the � !1 limit where q1 ! 1 withx = �(1 � q1) �nite. The �-integral in (20) can again be evaluated at the saddlepoint� = �0, where �0 minimises the square bracket in the exponentional for given z andt. Furthermore, the replica space dimension m! 0 (� !1) as we only access onesolution and it becomes exponentially unlikely that any other solution is visited [17].We therefore make a second self-consistent ansatz that w = m=(1� q1) remains �nitein the zero-temperature limit. After some algebra, including determining �0(z; t) forthe Gardner-Derrida cost function and elimination of q̂1,q̂0 and Ê, the one-step RSBfree energy for �+ = �� = 1 is given byhh�fRSBii = �wx�ZDt log [FRSB(t; w; x; q0; �; ��)]��+ q02x(1 +w�q)+log(1 +w�q)2wx ; (21)where � is as before (16), �q = 1� q0, and the function FRSB has simpli�ed toFRSB(t; w; x; q0; �; ��) = Z p2x��p�q� �p�qDz exp ��w2 �p�q z + ��2�+H � �p�q �+ e�wxH  p2x� �p�q ! ; (22)with � = � + pq0 t. The free energy has to be evaluated at the saddlepoints withrespect to the variables w, x, q0 and �.2.1.3. Saddlepoint equations and training error Examining both the RS (15) andthe one-step RSB (21) free energies more closely, one sees that the ferromagneticbias M of the weight vector (7) appears only in the de�nition of � (16) and can beset to zero without loss of generality (w.l.o.g.).y The order parameter M is thereforesuperuous, i.e., any ferromagnetic bias in the couplings can be compensated by anadjustment of the threshold �. This is in contrast to the usual paradigm, whicheliminates � in favour of M (e.g., [1, 7]), and therefore reduces the number of actualparameters of the percpetron. However, this is clearly only possible if mi 6= 0 and willlead to large absolute values of M for small mi.We further note that the bias of the input distribution mi appears only in thede�nition of � (16) also and its sole inuence is a rescaling of the threshold and thestability. Therefore a biased input distribution has the same e�ect on the performanceof the perceptron as the increase of the stability for an unbiased input distribution.This can be understood in geometric terms. If the input distribution is unbiasedinput vectors lie randomly distributed on the edges of the unit hypercube and twodistinct patterns have a typical overlap of zero. Biased patterns on the other handare correlated and have a typical overlap of m2i with each other, i.e., they concentrateon a \conelike" section of the hypercube. The typical distance between patterns istherefore reduced by p1�m2i . Any solution of the weight vector corresponds to ahyperplane which seperates the two kind of patterns. The achieved stability is halfthe distance of the two correctly classi�ed patterns with the shortest seperation acrossthis plane and hence the stability decreases byp1�m2i as well. Only at zero stabilityy The fact thatM is redundent is a direct consequence of the fact that the integral over M̂ does notcontribute in the thermodynamic limit.



8does the increase of the input bias have no e�ect on the performance of the perceptron.In the following, we will therefore set mi = 0 w.l.o.g..The saddlepoint equation of the derivative of the free energy with respect to � at�+ = �� = 1 gives0 =*� Z p2x���� Dt (t+ � )+� and0 =�� Z Dt t log [FRSB(t; w; x; q0; �; ��)]�� ; (23)for RS and one-step RSB respectively. For zero bias, one can readily see that � = 0 isalways a solution to this and the other saddlepoint equations; regaining the results ofthe percpetron without threshold. However, this does not necessarily imply that thisis the only solution to the saddlepoint equations, as demonstrated in Section 3.Taking the derivatives of the free energies with respect to �� and �+ at �+ = �� = 1and dividing by � gives the error rate (i.e., the number of errors divided by the totalnumber of patterns) of wrongly o� and wrongly on patterns respectively�o�=onRS = 12(1�mo)H �p2x� �� �� ;�o�=onRSB = 12(1�mo) Z Dte�wxH �p2x�pq0 t� �� ��FRSB(t; w; x; q0; �;��) ; (24)where we have set mi = 0 w.l.o.g..We note that we �nd numerically no di�erence between the total training erroryand the free energy in the thermodynamic limit for both RS and one-step RSBand conclude that the normalised entropy s = S=N must diverge sublinearly orlogarithmically for � ! 1. One can calculate the �rst order �nite temperaturecorrection of the free energy for both RS and one-step RSB analytically, and �ndthat it is negative and proportional to log(�q), and equal to the low temperatureentropy. Unlike in the binary case, where a negative entropy is physically impossibleand therefore an indication that the employed replica ansatz breaks down, a negativeentropy has no such physical meaning in the real valued case, due an arbitrary entropyo�set.2.2. Pattern stability distribution (PSD)The pattern stability distribution (PSD) P (�) is of interest as it provides the distanceof stabilised (� � �) and unstabilised patterns (� < �) to the given thresholdstability �, i.e., it gives an idea how seriously patterns are misclassi�ed. This extrainformation will be quite helpful in examining the already mentioned bifurcation pointin order parameter space in Section 3. For other error functions than the Gardner-Derrida cost function (e.g., the perceptron or adatron cost function), the integrationof the probability densityz p(�) over the unstabilised patterns yields the error rate �[21, 5], which is otherwise inaccessible. The PSD is further of great importance to thedynamics of related attractor neural networks, by determining the basin of attractionof the memory states [19, 20].y That is the error rates multiplied by �.z We use uppercaseP notations for probability distributions and lowercase p for probability densities.



9The PSD P (�jD) is in general dependent on the instances of the dataset D = f(��; ��)j� = 1; : : : ; pg. As we are interested in its average valueP (�) = hhP (�jD)ii, we quench over the instances of the examplesp(�) = hhp(�jD)ii = ** 1Z Z d�(W ) exp"��X� V (��; �; ��)# �(�� �1)++ ; (25)where the pattern stability of pattern 1 is calculated w.l.o.g. generality as thepattern distribution is independent of the pattern index �. Here, d�(W ) is thespherical constraint (5), but the above equation holds for any weight prior. In thethermodynamic limit, one can calculate this average using the replica trick. Thecalculation is similar to to that of the free energy except for the average over the �rstpattern [19]. After some algebra one �nds for the RS ansatzpRS(�) = �Z Dt FRS(t; �; q1; �; ��) �(�� �)FRS(t; �; q1; �; ��) �� ; (26)where FRS (13) has to be evaluated at the saddlepoint of the free energy. With theone-step RSB ansatz one �nds a similar expression to Eq. (26) for pRSB(�) only withFRS replaced by FRSB (20).For � !1 above the capacity limit�c, both pRS(�) and pRSB(�) can be simpli�edalong the lines of [21, 5] as the �-integral in both FRS and FRSB can be evaluated attheir respective saddlepoint �0.Calculating �0 for the Gardner-Derrida cost function equates the RS probabilitydensity pRS(�) =*�(�� �) Z p2x���� Dt + �(� � �)p2�(1�m2i ) exp ��12�2�+ ���� ��p1�m2ip2x�p2�(1�m2i ) exp ��12�2�+� ; (27)where x and � have to be evaluated at the saddlepoint of the free energy (15) asmentioned above and � =  (�) with  as in (14). The PSD has three terms, a�-function contribution for � = �, i.e., at the error boundary, and two Gaussiancontributions, which leave a gap of width p1�m2ip2x.In the one-step RSB ansatz, the probability density can be calculated similarlyleading to pRSB(�) = �Z Dt NRSB(t; w; x; q0; �; ��)FRSB(t; w; x; q0; �; ��)�� ; (28)where the denominator FRSB is identical to (22) and the numerator is given byNRSB(t; w; x; q0; �; ��) =�(�� �) Z p2x��p�q� �p�qDz exp ��w2 �p�q z + ��2�+ �(� � �)p2��q(1�m2i ) exp �� %22�q�+ ���� ��p1�m2ip2x�p2��q(1�m2i ) exp �� %22�q � wx� ; (29)



10where % = �+pq0 t and the values of the order parameters x, w, q0 and � are againdetermined by the saddlepoint of the free energy (21).Comparing the one-step RSB with the RS PSDs we �nd three similar contributions,a �-peak at the stability �, and two exponentional terms, seperated by a gapwidth ofp1�m2ip2x. In general, one �nds [5] that one-step RSB has a smaller gap, whichis formally due to a reduced saddlepoint value of x, and a reduced weight of the �-contribution. The one-step RSB distribution has also lost the gaussian form of theRS distribution, due to the presence of the denominator and the integration over t.We further �nd a correction to the third contribution, which represents unstabilised,i.e., erroneous, patterns, which has acquired an extra supressive exponentional terme�wx. As we already pointed out in Section 2.1.3, the role of a non-zero input biasis the rescaling of the threshold �, the stability � and the pattern stability � with afactor of p1�m2i , and can therefore be set to zero w.l.o.g..It is worth mentioning that the gap and the �-peak are a feature of trainingalgorithms above saturation employing the Gardner-Derrida cost function [22]. Thisis due to the fact that an algorithm achieving least errors attempts to stabilise theleast unstabilised pattern, until any movement of the hyperplane will destabilise apattern lying on the threshold decision boundary, leading to a fraction of patternsexactly on the decision boundary and leaving a gap between stabilised and unstabilisedpatterns. The above work has been complemented by a numerical study [23], wherethe numerical PSD exhibits a gap and a �-peak which are both �nite but smaller thanthe theoretical one-step RSB predictions within the accuracy of the simulations. Thisis consistent with a recent proof [18] which showed that any model exhibiting a gapin the PSD necessitates in�nitely many RSB steps.2.3. Ising perceptronIn the case of the Ising perceptron the calculation is very similar. In fact, thecalculation of the replicated Hamiltonian Gr (10) is exactly the same as it onlydepends on the quenched average over the training examples. The di�erence istherefore mainly in the prior constraint Hamiltonian G0 (9), where the integrationover weight space is performed. Since the weight vector of the Ising perceptron isbinary, i.e.,W 2 f�1; 1gN , the measure in weight space [see Eq. (5)] becomes a sumR d�(W ) = QNi=1PWi=�1, and all terms with the Lagrange multiplier Ê� associatedwith the spherical constraint vanish in Eq. (8). The prior constraint Hamiltonianequates to GI0(Q̂��) = log(Y� exp "�X�<� Q̂��W �W �#) : (30)Again, using two ans�atze for the structure in replica space, RS and one-step RSBidentical to those made in Section 2.1, one �ndsGIRS0 (q̂1) = � q̂12 + Z Dt log h2 cosh�tpq̂1�i (31)GIRSB0 (q̂1; q̂0) = � q̂12 + m2 (q̂1 � q̂0) + 1m Z Dt log �Z Dz 2 cosh�tpq̂0 + zpq̂1 � q̂0��mwhere IRS(B) stands for the RS or one-step RSB ansatz for the Ising perceptron.Great care has to be taken in the � !1 limit, which is discussed in detail in [6],here we will only outline the main results. One �nds that the entropy of the RS



11solution is negative for � > �IS with q1 < 1 in the zero-temperature limit, and istherefore incorrect above �IS. Studying the one-step RSB solutions identi�es �IS asthe capacity limit �Ic. The RS error only becomes strictly positive for � > �IE whereq1 ! 1 with x = �(1 � q1) �nite and the RS free energy of the Ising perceptron canbe simpli�ed [16], resulting inhhfIRSii = �*Z p2x���� Dt (t+ � )22x +H �p2x� ��+� � 1�x; (32)which is identical to the RS free energy of the spherical perceptron (15) but for aconstant 2=� in the last �-independent term. The RS solution of the Ising perceptronat � is therefore same as the RS solution of the spherical perceptron at ~� � ��=2,which holds also for error rates and the distribution of pattern stabilities. The RSsolution of the Ising perceptron will therefore not be discussed further.However, as already mentioned above, the RS solution is incorrect for � > �IS and� > �c, where one �nds one-step RSB solutions, which are characterised by q1 = 1 andq̂1 =1 for �nite �. One further �nds m = �c=�, q̂0 ! 0 and makes the self-consistentans�atze that v = m� and y = mpq̂0 are �nite in the zero-temperature limit. Insertingthese ans�atze back into (32), one �nds GIRSB0 (1; q̂0) = GIRS0 (y2)=m. The replicatedHamiltonian GIRSBr (19) is calculated similarly to the spherical perceptron, with theabove ans�atze becoming equivalent to x! 0 and w !1 with wx �nite. The one-stepRSB free energy of the Ising perceptron is therefore given byhh�fIRSBii = �v�ZDt log [FIRSB(t; v; y; q0; �; ��)]��+ 1v Z Dt log [2 cosh(yt)]��qy22v ; (33)for �+ = �� = 1 and the function FIRSB isFIRSB(t; v; y; q0; �; ��) = e�v + (1� e�v)H� �p�q � ; (34)with � as before. The free energy has to be evaluated at its saddlepoint with respectto the variables v, y, q0 and �. The normalised entropy of the Ising perceptron can beshown to be identical to zero [6].Identical to the spherical perceptron the ferromagnetic bias on the weightsM andthe bias of the input distribution mi can be set to zero w.l.o.g.. We also �nd as beforethat � = 0 is always a solution to the saddlepoint equation for zero output bias andthe error rates of wrongly o� and wrongly on patterns are given respectively by�o�=onIRSB = 12(1�mo) Z Dte�vH �p2x�pq0 t� �� ��FIRSB(t; v; y; q0; �;��) : (35)The pattern stability distribution (PSD) density pIRSB(�) of the Ising perceptronwithin a one-step RSB ansatz can be calculated similarly to the spherical perceptronin Section 2.2. In the zero-temperature limit, we employ x! 0 and w !1 with wx�nite to �nd pIRSB(�) = �Z Dt NIRSB(t; v; y; q0; �; ��)FIRSB(t; v; y; q0; �; ��)�� ; (36)where the denominator FIRSB is identical to (34) and the numerator is given byNIRSB(t; v; y; q0; �; ��) = [�(�� �) + e�v�(�� �)]p2��q(1�m2i ) exp �� %22�q� ; (37)



12with % as in (29) and the values of the order parameters y, v, q0 and � are evaluated atthe saddlepoint of the free energy (33). The PSD of the Ising perceptron has a commonGaussian numerator centered around %, but for an extra exponential surpression ofthe unstabilised patterns � < � proportional to e�v.Comparing the PSDs of the spherical and the Ising perceptron, shows no di�erencewithin the RS ansatz besides the already mentioned rescaling of �. However, one �ndsstriking di�erences within the one-step RSB treatment: The gap in the distribution aswell as the �-peak contribution at the threshold boundary � have vanished in the PSDof the Ising perceptron in contradiction to [22] (see Section 2.2). However, this couldbe explained by the fact that the Ising perceptron cannot adjust its decision boundarycontinuously, due to the discreteness of the weights. Therefore, one may expect thatunstabilised patterns lie arbitrarily close to the decision boundary and that patternsdo not accumulate at the threshold stability.Whereas it has been shown previously that the one-step RSB ansatz for thespherical perceptron is not exact [18], which is formally due to the gap in the PSD, theIsing perceptron does not exhibit this gap and there has been some argument whetherone-step RSB is exact for this model.y Krauth andM�ezard [6] have carried out a secondRSB step and have found no solution di�erent to the one-step RSB result, although oneshould mention that most of their numeric work was carried out around the capacitylimit. Fontanari and Meir [24] have calculated the entropy of the Ising perceptron in amicrocanonical approach and found that their RS solution is identical to the one-stepRSB solution in the canonical approach. They calculated that the microcanonical RSsaddlepoint is locally stable for all �, which also suggests that the ansatz is correct,as a breakdown would require that the RS saddlepoint is locally stable but globallyunstable even for �!1. A third approach by Horner [25] investigating the learningdynamics using dynamic mean �eld theory which does not rely on the replica trick,indicates a slightly di�erent picture. He �nds that the uctuation dissipation theorem(FDT) holds for high temperatures and the dynamics are ergodic validating the useof RS. For lower temperatures ergodicity is broken but one �nds that a quasi FDT(QFDT) holds, parameterised by a variablem, which has a similar role as the one-stepRSB parameter m but has to be chosen inconsistently to the choice of m in replicatheory. These dynamics were found to be strictly stable for in�nite times indicatingthat no further RSB steps are necessary in this regime. Furthermore, there existsa third regime with additional diverging time scales which corresponds to furtherbreaking of replica symmetry.z However, the relevance of dynamic mean �eld theoryfor validating replica ans�atze is debatable.3. DiscussionCalculating the saddlepoint solutions for the order parameters and the error rates asa function of the normalised example number � for a range of stabilities � and outputbiases mo, we �nd striking di�erences in the solution space to the case of a perceptronwithout threshold even for zero (output) bias [5, 6].Since we found the zero bias results the most intriguing, we will limit most ofour discussion to this special case, as we �nd that the introduction of a single freey One-step RSB has been proved to be exact for several models, e.g., for the generalised Sherrington-Kirkpatrick (SK) spin glass with p =1 spin interactions, which is equivalent to the random energymodel and can be solved exactly [26].z An explicit phase diagram is given only for the perceptron and adatron cost functions.
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� �on�?�c 6�RSBp 6�RSp �RS(0)�RS(�)�RSB(0)�RSB(�)�onRSB(�)�onRS(�)Figure 1. The total error rate � of the spherical perceptron as a function of � for� = 0:1 is predicted by one-stepRSB to be larger than the estimate of RS. For � > �cboth theories initially predict a portion of 1=2 for wrongly on errors �on indicatingzero threshold (see also Figure 2). Above a critical �p, �on decreases abruptly andquickly approaches zero signaling a solution with non-zero threshold. This solutionexhibits a lower asymptotic error rate than a perceptron without threshold. Thepredicted value of �p is smaller for one-step RSB than for RS.parameter to the perceptron, a threshold, can change the space of solutions accessibleto the perceptron radically even for unbiased input and output distributions. Wewill �rst examine the order parameter solution space and the total error rates ofthe spherical perceptron and the Ising perceptron in Sections 3.1 and 3.2. This isfollowed by a discussion of the pattern stability distribution (PSD) in Section 3.3 anda discussion of the phase transition found in parameter solution space as a function ofthe stability � in Section 3.4. We will further assess the inuence of a biased outputdistribution in Section 3.5. As we have discussed in Section 2.1.3, a biased inputdistribution can be absorbed through rescaling of the stability and therefore need notbe discussed in more detail.3.1. Error rates and order parameter solution space of the spherical perceptronIn Figure 1 we show the total error rates � and the percentage of wrongly on errors �onfor the spherical perceptron in both the RS and the one-step RSB ansatz, for mo = 0and � = 0:1 as a function of �. Below the capacity limit �c the error rate �(�) isidentically zero. For � > �c, we �nd that the RS estimate of the error rate is alwaysbelow the one-step RSB estimate for all � > �c and replica symmetry is broken asexpected [16]. In Figure 2, the one-step RSB overlap q0 is plotted as a function of �in the same scenario, indicating the degree of replica symmetry breaking.In Figure 1 one can also see that for � > �c, the proportion of wrongly on errors �onis initially 1=2. This corresponds to the threshold � being identical to zero as one cansee in Figure 2. This solution for both RS and one-step RSB could have been expected
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q0 ��
q0(0)q0(�)�RSB�RSFigure 2. The prediction of the one-step RSB overlap q0 for the solution goes tozero as � ! 1 for the perceptron with threshold, whereas it approaches one withzero threshold. The threshold as a function of � in the one-step RSB and the RSansatz is also included.from examining Eqs. (23). However, above a critical value of the normalised examplenumber � > �p, we �nd a second solution to the saddlepoint equations, which ischaracterised by a non-zero threshold and a fraction of wrongly on errors smaller than1=2 (see Figures 1 and 2). The value of �p can be seen to be signi�cantly smaller forone-step RSB than for RS. This is found to be true for all �nite stabilities, which willbe examined in more detail in Section 3.4 where we examine the phase transition asa function of the threshold stability �.One should note that although a zero threshold solution (to which we will refer as�0) still exists and is identical to the solution of a perceptron without threshold, it ishowever not a physically viable solution for the perceptron with threshold as it exhibitsa higher free energy (i.e., larger error rate, as shown in Figure 1) than the non-zerothreshold solution (to which we will refer as �) and is therefore to be neglected in thethermodynamic limit. This illustrates that a solution to the saddlepoint equationsfound for any given replica ansatz is not necessarily unique.Going back to Figure 1, one �nds for further increasing � ! 1 the error rateof the �0-solution approaches an asymptotic error rate which is higher than 1=2, theasymptotic error rate of the �-solution. The qualitative di�erence between the errorrates can be better understood by examining the PSD and we will therefore defer thediscussion of the error limit to Section 3.3.The bifurcation point in solution space is a second order phase transition asall order parameters [see e.g., �(�) and q0(�) in Figure 2] are continuous but non-di�erentiable for � = �p. In particular, for the threshold the numerical data stronglyindicates the functional relationship� / [log(�)� log(�p)] (38)



15for both RS and one-step RSB theory with an exponent  which is in very goodagreement with the mean-�eld theory exponent of 1=2, and a prefactor which is �-dependent and consistently larger for one-step RSB. We further have spontaneoussymmetry breaking in the space of thresholds � as the solution is invariant under signchange of �. The external �eld in this case is the output bias mo as it breaks thesymmetry in �-space and \smears" out the phase transition, as will be studied moreclosely in Section 3.5.The phase transition at �p stems from the competition between optimising theweights (or hyper plane angle) and a deterministic bias in the output of the perceptronwhich is controlled by the threshold. Whereas it is self-evident that for a biasedoutput distribution it is also sensible to bias the output of the student with a non-zerothreshold, this is only the case for an unbiased output distribution when the error ratebecomes large enough for a given stability �. To understand this more clearly, thedistribution of pattern stabilities together with the total error rate is studied aroundthe phase transition in Section 3.3.In order parameter space we �nd qualitatively very di�erent solutions, as canbe seen in Figure 2 for the order parameters q0 and �. For the �-solution, we �ndthe threshold increases towards in�nity following the above functional relationshipof Eq. (38) and q0 decaying to zero, where we �nd numerically q0 / 1=�, with thepossibility of minor logarithmic corrections. For the �0-solution on the other hand q0approaches one. To investigate the functional behaviour of the �0-solution in moredetail, one can expand the free energy using the numerically justi�ed ans�atze x / 1=�and w / p� for �!1. Although we �nd the same scaling behaviour as [5], wehave found that their prefactors are inconsistent with our analytical solutions and thenumerical data. In particular, the solutions of the order parameters are to leadingorder�q = 2log(�) ; x = 94 e�2=2�[log�]3=2 ; and w = 49p� e��2=4p� [log�]9=4: (39)These solutions are however only good approximations provided �q is small andlog�� log(log�), i.e., in general �� 1010 and is therefore not very accurate inthe region where numerical solutions were obtained. The solutions suggest that forincreasing � the degree of RSB becomes more severe as m [m = wx=�] and (1� q1)[1� q1 = x=�] decay to zero faster than the temperature.For the solution with � 6= 0, we have not been able to �nd closed form asymptoticsolutions to the saddlepoint equations. In fact, closed form asymptotic solution areeven infeasible for the much simpler RS theory. The numerical analysis is quite di�cultfor both x and w; w and wx may at most diverge algebraically in log� with powerssmaller than one, whereas x seems to have a similar log�-behaviour, but the poweris even smaller in magnitude and its sign seems to be � dependent. As the error inthe numerical calculation of the order parameter solutions increase with � and theprefactor in the power laws in log� are very small, we were not able to determinethe value of the powers accurately. A divergent behaviour of wx indicates that thedegree of RSB becomes less severe for increasing �, which should be contrasted to the�0-solution where the degree of RSB becomes worse.We �nd the di�erent asymptotic behaviours for the two sets of order parametersolutions puzzling; especially, the asymptotics of the order parameter q0 | thetypical overlap between two replicas in di�erent solution spaces. Whereas q0 decaysalgebraically in � to zero for the �-solution, i.e., weight vector solutions become
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� �on�?�c 6�IRSBp �IRSB(0)�IRSB(�)�onIRSB(�)Figure 3. The error rates � are shown as a function of � with � = 0:1 for the Isingperceptronwithin the one-step RSB ansatz. Similar to the spherical perceptron thereis initially only one solution with a fraction of 1=2 for wrongly on errors �on and zerothreshold (see Figure 4). Again we �nd a bifurcation point in solution space at acritical �p, which is smaller than for the spherical perceptron and similar behaviourof the fraction of �on errors.totally uncorrelated, it approaches 1 logarithmically for the �0-solution, i.e., the weightvector solutions become absolutely correlated. It has been argued before [5] that thisasymptotic behaviour for the spherical perceptron without threshold is incorrect (andone-step RSB must therefore be inexact at least for high storage level), since oneshould expect q0 to approach 0 for �!1 as in this limit any weight vector shouldperform equally well on the training data. More precisely, for loads � greater thanthe capacity limit �c, the perceptron classi�es only a subset of the examples correctlyand misclassi�es the rest. For moderate loads and small error rates, there must be asigni�cant overlap between the sets of examples two weight vector solutions classifycorrectly. Therefore, the average overlap between weight vector solutions should benon-zero and hence, q0 > 0. For very large � and large error rates �, the smallestpossible overlap between two sets of correctly classi�ed examples should decreasey andsince the patterns are uncorrelated, the correlations between their respective weightvector solutions should decrease similarly. Hence, the smallest average overlap scalein the replica ansatz should approach 0 for �!1.We will later come back to this argument and the issue of the breakdown of one-stepRSB in the light of the asymptotics of the order parameter q0, especially in comparisonwith the asymptotic solutions of the Ising perceptron, which we will present below.3.2. Order parameter solution space of the Ising perceptronAs mentioned in Section 2.3, whereas it has been established that one-step RSBy In fact, for the perceptron with zero threshold and � > 0, one �nds � > 1=2 for � large enough andthe sets of correctly classi�ed patterns for two solutions could be disjoint.
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 q0 ��
q0(0)q0(�)�IRSB

Figure 4. The one-step RSB overlap q0 of the Ising perceptron for the �-solutiongoes to zero as � ! 1, whereas it approaches a �nite value (q0 = 0:51114) for the�0-solution. The threshold as a function of � grows logarithmically to in�nity.is not exact for the spherical perceptron there has been some argument whether one-step RSB is exact for the Ising perceptron, and it is therefore useful to compare thesolution in order parameter space and their asymptotics for the two weight priors.In Figure 3 we show the evolution of the error rates and the fractions of wronglyon errors and in Figure 4 the corresponding values of the order parameters q0 and� for the Ising perceptron in the one-step RSB ansatz in the same scenario, i.e., formo = 0 and � = 0:1. We �nd certain similarities but also striking di�erences to theresults for the spherical perceptron. At the capacity limit �Ic, q0 does not approach 1as in the spherical perceptron, indicating a single solution in weight space, but a�nite value q0 < 1, i.e., several correlated solutions exist at �Ic. As for the sphericalperceptron, the solution to the saddle point equations is initially unique and exhibitsa zero threshold. As the error increases for growing �, we �nd a similar second orderphase transition in order parameter space, with the emergence of a second solution tothe saddle point equations characterised by a non-zero threshold at � = �p. For thethreshold, the numerical data supports the same mean �eld power-law behaviour ofEq. (38).In the asymptotic limit of in�nite example load, we again �nd that the RSB overlapq0 approaches a �nite limit for the �0-solution, which is � dependent but always strictlyless than 1, whereas it converges against zero for the �-solution, following a power-lawdecay q0 / ��1.We further �nd for the Ising perceptron without threshold that the order parametery approaches a �nite value as q0, whereas v, which is the equivalent of wx in thespherical case, decays as v / 1=p�, similar to the spherical perceptron, indicatingthat the degree of RSB becomes more severe for increasing �.We would like to point out that the asymptotic result of q0 violates the qualitativeargument in [5], which demands q0 ! 0 for �!1, although it has been argued that



18one-step RSB may be exact for the Ising perceptron. In order to exclude with certaintythat no solution to the saddlepoint exists which is characterised by q0 ! 0, we havecarried out substantial numerical and analytical work for the special case � = 0 evenfor � > 1010, where the numerical solutions to the saddlepoint equations of Eq. (33)become unreliable due to the inherent inaccuracy of the numerical integrations. Thesaddlepoint equations were expanded in a Taylor series in v, for which the dominantterms of all integrals can be solved analytically for � = 0. This expansion wasin excellent agreement with previous results and also provided accurate results for� values, where the solutions to the full equations were inaccurate. However, anextensive numeric search for solutions with q0 and y small was unsuccessful even for� > 10200. This could be con�rmed by the fact that algebraic saddle point equations,obtained by expanding the equations further for small q0 and y, have only unphysicalcomplex roots.In the numerical analysis for the �-solution, it is again di�cult to �nd the exactpower law exponents and possible logarithmic corrections. However, we �nd exactrelationships between order parameters. The conjugate order parameter y decays as1=p�. This suggests a relationship with q0 as y2 / q̂0, and indeed we �nd q0=y2 � 1for large �. The order parameter v, diverges logarithmically in � and we �nd v=� � 2�as the asymptotic behaviour, again indicating that the degree of RSB of the �-solutiondecreases for large �.These functional relationships can be con�rmed by a series expansion of the freeenergy around q0 = 0 and y = 0, followed by an asymptotic expansion in � andv, where we assumey w.l.o.g. � > 0. The later expansion is however only valid inthe region where � � �� 1. The saddlepoint equations of @f=@y and @f=@� give toleading order q0 = y2 and v = 2��, in agreement with the numerical data. Inserting@f=@v in @f=@q0 givespq0 = y = log(2)�p�The remaining saddlepoint equation @f=@v, determining �,exp ��12(� � �)2�� exp ��12(� + �)2� = p2� log(2)�� ; (40)does not have a closed form solution. However, for ��� 0 an approximate solutioncan be found � � �+p2 �log� ��p2� log(2)��1=2 : (41)Whereas the analytical equations for y and q0 and the solution of �, obtained by solvingEq. (40) numerically, �t the numerical solutions of the full saddle point equations verywell even for moderate values of 2 � � � 6, the closed form solution for � (41) is onlya good approximation for � � 1 in this region.3.3. Pattern stability distribution (PSD)The phase transition in order parameter space is driven by the increase of the errorrate � for increasing example load �. It is therefore natural to examine the change iny For � < 0, one has to replace � by j�j in all the equations.
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�10�2�p �
(b)� = 0:3� = 0:2� = 0:1Figure 5. (a) The PSDs p(�) of the Ising perceptron is shown as a function ofthe pattern stability � for � = 0:1 for an example load �(� = 0:5) = 59:492 close tothe phase transition point [�p(� = 0:1) = 53:021]. The �0-solution predicts the samePSD p� for both � = +1 and � = �1 patterns. For the �-solution this symmetryis broken. (b) The di�erence in the total PSD (�p � p+ + p� � 2p�) as a functionof � for various values of �: �(0:1) = 53:266, �(0:2) = 54:008, and �(0:3) = 55:266.The asymmetry of �p(�) caused by the discontinuity at the decision boundary leadsto the reduction in the error rate of the �-solution.the pattern stability distribution (PSD) of the perceptron around the critical load �p.We �rst examine the PSD of the Ising perceptron as it has a simpler structure (itlacks the gap and the �-contribution of the spherical case).In Figure 5a, PSDs of the Ising perceptron for patterns with targets � = +1and � = �1 are plotted for both the �0 and �-solution for stability � = 0:1. Theexample load � was chosen slightly larger than �p and determined as a functionof the value of threshold �, e.g., in Figure 5 �(� = 0:5) = 59:492 [for comparison�p(� = 0:1) = 53:021]. The � = �1-pattern stability distributions p� of the �0-solution are identical. For the �-solution this symmetry is broken and the PSDs p+and p� are distorted around the former. For � > 0 the probability in the unstabilisedregion � < � has increased for � = +1-patterns whereas it has reduced for � = �1-patterns, and vice versa for the stabilised region � � �.All three distributions exhibit a discontinuity at the threshold stability � which isformally due to the exponentional factor e�v in Eq. (37). Although the functional formof the PSDs (36) is quite complicated, the PSDs have almost conserved the Gaussianform of the numerator. The means are shifted and dependent on ��.To assess the change in total error, it is more accurate to study the di�erence ofthe total PSD [�p � (p+ + p�) � 2p�]. In Figure 5b, �p is shown for three valuesof � even closer to the critical point. One can see that the shift of the means of the�-PSDs removes probability mass from the region close to the decision threshold �.Furthermore �p(�) is almost symmetric around �. If this symmetry were perfect, thetotal error rate could not be di�erent for the �0 and �-solution. However, we �nd adistortion in the region � � �, which can be most easily depicted by the discontinuityat �, which grows for increasing �(�).We �nd quite similar results in the case of the spherical perceptron although dueto the gap and the �-contribution in the PSD lead to a more complex behaviour. Tomake the e�ect of these extra features more obvious, we have chosen a larger thresholdstability � = 1 for the spherical case. In Figure 6a, the one-step RSB PSDs of patterns
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�10�2�p �
(b)6� = 0:3� = 0:2� = 0:1Figure 6. (a) The PSDs p(�) of the spherical perceptron as a function of thepattern stability � for � = 1 for an example load �(� = 0:5) = 2:0901 close to thephase transition point [�p(� = 1) = 1:8706]. Again the �0-solution predicts thesame PSD p� for both � = �1 patterns, whereas this symmetry is broken for the�-solution. The �-peak is indicated by the arrows and its probabilitymass is given byP�� = 9:5251�10�2, P+� = 9:1652�10�2, and P�� = 1:0563�10�1. (b) The di�erencein the total PSD (�p � p+ + p� � 2p�) as a function of � for various values of�: �(0:1) = 1:8790 [�P� = 2:3490�10�4], �(0:2) = 1:9076 [�P� = 1:1915�10�3],and �(0:3) = 1:9469 [�P� = 2:6226�10�3]. The reduction in the error rate of the�-solution seems to be mainly caused by the increase of the gap.with targets � = +1 and � = �1 is shown for both solutions and an example loadof �(� = 0:5) = 2:0901 [for comparison �p(� = 1) = 1:8706]. Again we �nd that the� = �1-PSDs of the �-solution are distorted around the PSD of the �0-solution.The distributions have three components. For � < �, the distribution looks similarto a Gaussian hump with means which vary with the value of ��. This regimeis seperated by a visible gap to the stabilized patterns, with a gap width which iswidened for the �-solution. One further �nds that the contribution of the �-functionsat � = � has increased for the �-solution. The main probability mass of the stabilizedpatterns is found in the Gaussian-like tail for � > �.To study the di�erences of the PSDs, we further show �p(�) for three values of �closer to �p in Figure 6b. We �nd less symmetry in �p than for the Ising perceptron,but again total probability mass has been removed from the vicinity of � = �. Themain reduction in the error rate in this case seems to come from the widening of thegap. This di�erence in probability mass has been partly shifted to the �-contributions.The increase of probability mass at the �-peaks and the decrease of probability massat the widened gap is however between a factor of 10 to 100 larger (and increasing for�! �p) than the reduction in the error rate for the � values studied in Figure 6b.It is further interesting to study the limit�!1 as the error rate of the �0-solutionapproaches its asymptotic value, which is larger than the asymptotic error rate of the�-solution of 1=2 as was shown in both Figures 1 and 3. The �-solutions in the limitof in�nite example load has been shown to be characterized by a threshold increasingto in�nity and the portion of wrongly on errors decreasing rapidly to zero (see e.g.,Figures 1 and 2).To study this limit more closely, we show the PSDs of the spherical perceptronin the one-step RSB ansatz for � = 1 and increasing � separately for the �0 and�-solutions in Figure 7. For the �0-solution (which is equivalent to the perceptron
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 p �
(b)6� = 0� = 1� = 1:5� = 2� = 3Figure 7. The PSDs p(�) of the spherical perceptron as a function of the patternstability � for � = 1 and increasing example load �. (a) The PSD of the �0-solution and �(� = 0) = �p = 1:8706 [P�� = 1:1029�10�1], �(1) = 2:8878[P�� = 6:1194�10�2], �(2) = 10:800 [P�� = 1:1017�10�2], �(3) = 85:059 [P�� =9:2650�10�4], �(4) = 1385:9 [P�� = 5:1225�10�5], and �(� = 6) = 6:2488�105[P�� = 3:4349�10�8]. The total PSD of both � = �1-patterns approaches thezero mean unit variance Gaussian distribution. (b) Both PSDs of the �-solutionfor a range of � values [see above and �(� = 1:5) = 4:0890]. The �-contributionsto the � = �1-PSDs for � > 0 are given by (in order of increasing threshold):[P+� = 6:0682�10�2; P�� = 8:0595�10�2], [P+� = 3:2087�10�2; P�� = 4:9147�10�2],[P+� = 1:3589�10�2; P�� = 2:4065�10�2], [P+� = 1:1555�10�3; P�� = 2:7075�10�3].Both PSDs approach half of the probability mass of a unit variance Gaussiandistribution centered at ��.without threshold), both PSDs approach half the probability mass of a Gaussiandistribution with zero mean and unit variance. This is as expected, since the examplesare uniformly distributed spatially and a random weight vector on the hypersphere hasan average overlap (activation) with the examples which is Gaussian distributed. Asall examples with absolute activation smaller than � are always counted as erroneous,the error rate approaches � = 1�H(�) � 1=2 in the �!1 limit.yFor the �-solution on the other hand, both PSDs also approach (half the probabilitymasses of) unit variance Gaussian distributions but with means centered around ��.Although any weight vector will have a Gaussian distributed overlap, the activation isshifted due to large threshold. This means that for in�nite �, the �-solution classi�esthe examples deterministically as either all +1 or �1 depending on the sign of the(in�nite) threshold, resulting in an total error rate of 1=2 irrespective of the stability�. One can assess the convergence rate of the the error rate of the percpetron againstthe asymptotic error rate �1 from the numerical solutions of the saddlepoint equations.For the �0-solution, we �nd within the RS ansatz (independent of the weight prior),and within the one-step RSB ansatz for spherical and Ising perceptron respectively�1 � �RS / ��0:3333�1; �1 � �RSB / ��0:490�5; and �1 � �IRSB / ��0:500�1;where the error indicates the uncertainty in the last signi�cant digit only. The di�erentexponent in the powerlaw for Ising and spherical perceptron in the one-step RSBy This means that any random weight vector on the hypersphere has the same error for � = 1. Inthe case of � = 0 this corresponds to random guessing of the output with 50% chance of success.



22ansatz is due to a logarithmic correction in the spherical case, as can be con�rmedby using the results for the expansions of the saddlepoint equations (39) to calculatethe asymptotic error of the spherical percepetron in the RS and similarly the one-stepRSB ansatz�1 � �RS = 12 "12e��2�� #1=3 and �1 � �RSB = e��2=4p� [log�]1=4p� : (42)For the �-solution we �nd similarly for the total error rate12 � �RS / ��1:0002�2; 12 � �RSB / ��1:04�4; and 12 � �IRSB / ��1:04�4;for the three cases respectively. For the �-solution it was again di�cult to measurethe powers in the one-step RSB cases very accurately due to possible logarithmiccorrections. This is supported by comparing the numerical predictions to ouranalytical results for the Ising perceptron, where we �nd to leading order12 � �IRSB = log(2)2��s 1�; (43)where �s is the solution for the threshold from Eq. (40) or its approximation (41),which gives a logarithmic correction to the power-law with exponent 1.Comparing the predictions of the power-law decay of the error rate between �0-and �-solution, one notes two important di�erences: First, the exponent of the decayis twice as large for the �-solution, where the error decays linearly with �, and a slowerconvergence for the �0-solution withp�. Second, the correction of the �-solution goingfrom RS to one-step RSB is only minor, a logarithmic term, whereas it is substantialfor the �0-solution, a change in the exponent from 1=3 to 1=2. This suggests that thee�ect of RSB for large � is more severe for the perceptron without threshold thanwith threshold. It also may indicate that the e�ect of further RSB breaking shouldbe less pronounced for the � than for the �0-solution.3.4. The stability dependence of the phase transitionIn this section we will examine the dependence of the phase transition point in orderparameter solution space on the threshold stability �. In Figure 8, �p is plotted versus� on a log-log scale for both spherical and Ising perceptron in the RS and one-stepRSB ans�atze. The critical point �p in solution space increases for decreasing stabilitybut exists for all non-zero stabilities, and exhibits a power-law dependence on � forsmall stabilities with �p !1 as �! 0. The numerical data predicts the exponentsof the power laws as�pRS / ��3:000�1; �pRSB / ��2:04�2; and �pIRSB / ��2:0000�1;where the RS theory of the Ising perceptron only rescales the prefactor with theconstant 2=�.From Figure 8, we can further conclude that the phase transition exists for all �nitestabilities � > 0. The limits �! 0 and �!1 are therefore not interchangeable, i.e.,the \point" f� = 0; � =1g is an unstable �xed point. Although, � = 0 would havean error rate of 1=2 at � =1 irrespective of the threshold, only the �0-solution isaccessible to the perceptron for any �nite � and it has no access to the �-solution for�!1.
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�p ��pRSB�pRS�pIRSB�pIRSFigure 8. The critical normalised example number �p as a function the stability� on a log-log scale shows a power law behaviour for small stability. The predictedpower law behaviour using one-step RSB is signi�cantly di�erent to the one predictedfrom RS.As the phase transition seems to be triggered by the increase of the error rate abovea critical value, we also show the error rate �p = �(�p) at the critical load, togetherwith its deviation from the asymptotic error rate 1=2 in Figure 9. One can see that thestability has a dominant inuence on the occurrence of the phase transition throughthe error rate. For large stabilities the �0-solution becomes already unstable for smallerror rates, with the limit �p ! 0 for �!1. The di�erence in the critical error ratebetween the Ising and spherical perceptron is greatest for moderate stabilities � � 1,which may be attributed to the gap and the �-contribution in the PSD of the sphericalperceptron.The RS theory not only underestimates the error for a given load � and thereforegives the incorrect power law for �p but also fails to predict the correct critical errorrate. RS fails especially for smaller stabilities, i.e., large � as expected. This isespecially obvious by looking at the remnant error rate in Figure 9, which decays witha power law. The exponents can be also evaluated from the numerical data:12 � �pRS / �1:000�1; 12 � �pRSB / �0:993�2 and 12 � �pIRSB / �1:00000�1:Although RS seems to give a reasonable power law decay of the error, the prefactor isblatantly incorrect. An asymptotic expansion for small thresholds and stabilities forthe RS theory gives�pRS = 89p2��3 ; and 12 � �pRS = �2p2� (44)Of more interest is the functional behaviour of the one-step RSB solution for smallstabilities, as the numerical solutions indicate a deviation from the pure power law
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Figure 9. The error rate �(�p) and its deviation from the asymptotic error rate 1=2is shown a function of the stability � on log-lin and log-log scales respectively. Theremnant error rate 1=2�� shows a power law decay for small �. For larger stabilities,the phase transition occurs for increasingly small error rates.behaviour in both the point of the phase transition as well as the asymptotic error. Asimilar analytic expansion gives�pRSBplog�pRSB = 12�2 (45)for which a closed form solution does not exist. However, one can see that the deviationfrom the pure ��2 power law behaviour of �p is due to the additional logarithmic termin �p.For the Ising perceptron it is not possible to expand all of the equations as the orderparameters y and q0 have �nite limits. However, the numerical solutions themselvesgive us some insight. For the Ising perceptron there is no numerical indication thatthe critical load �p or its error �p deviate from pure power law behaviours in contrastto the spherical case, which exhibit logarithmic corrections. Furthermore, for largestabilities the phase transition occurs at a smaller error rate for the Ising than for thespherical perceptron, whereas this characteristic is reversed for small stabilities, wherethe phase transition occurs at a larger error rate. These di�erences between the twoweight priors could either be attributed to their respective weight space structures, orit may indicate that one-step RSB is correct in the Ising and incorrect in the sphericalcase.3.5. Non-zero output bias moFor non-zero output bias mo, the symmetry in the space of thresholds � is broken andwe �nd only solutions with � 6= 0 for all �, with � > 0 for mo < 0 and vice versa. Dueto the symmetry of the solutions for mo !�mo ) � !��, one can assume mo < 0
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(b) �0:9�0:7�0:5�0:3�0:1�0:010Figure 10. (a) The evolution of the threshold � with the example load � is shownfor several small values of the bias (see legend) around the critical load �p withconstant stability � = 0:1. The phase transition is increasingly smeared out forgrowing magnitude of the bias. (b) The evolution of �(�) over a wide range of � forlarger magnitudes of the biasmo shows the same e�ect. The left-hand starting pointof each curve depicts the capacity limit �c increasing with growing magnitude of thebias.and � > 0 without loss of generality. Below, we will discuss only the Ising perceptronas we found the behaviour for both binary and real weights to be quite generic.In Figure 10 the threshold of the Ising perceptron is shown as a function of � forvarious values of the output bias mo at �xed stability � = 0:1. In Figure 10a, onesees that for very small magnitude of the bias, the evolution of the threshold closelyapproaches the curve for zero bias. Similar behaviour can also be found for the otherorder parameters. The largest deviations between the zero-bias solution and the �nitebias solution can always be found around the point of the phase transition at �p. Inthis sense, the output bias mo can be seen as an external �eld which \smears" out thephase transition.In Figure 10b, we show the evolution of the the threshold � for larger magnitudesof the bias over a wider range of loads �. For large � the threshold tends to in�nity,whereas the left-hand starting point of each curve depicts the capacity limit �cincreasing with increasing magnitude of the bias.For large �, one can expand the free energy of the Ising perceptron, similarly tothe zero-bias case. One �nds that the leading order of @f=@y gives q0 = y2 as for thezero bias case. The leading order of @f=@� impliesv = 2j�sj �� + 12j�sj log�1 + jmoj1� jmoj�� = 2j�sj��; (46)where �s is the solution of the threshold for given load � and �� is a modi�ede�ective stability, which depends on the bias and on the solution of the threshold(i.e., ultimately on �). Further inserting @f=@v in @f=@q0 yieldspq0 = y = log(2)p1�mo2�� 1p�: (47)The remaining saddlepoint equation @f=@v to determine �s is given by(1 + jmoj) exp ��12(j�j � �)2�� (1� jmoj) exp ��12(j�j+ �)2� = p2� log(2)��� : (48)



26and cannot be solved for � in closed form. The approximation used in the zero-biascase in Eqs. (40) and (41) [see Section 3.2], which neglects the less dominant term onthe left hand side of Eq. (48), still does not make a closed form solution feasible, dueto the �-dependence of ��.For the asymptotic error rate one �nds �1 = 12 (1� jmoj) irrespective of thestability � | the intuitive result if one classi�es the larger class of example correctlyand misclassi�es the smaller example class by using a threshold of in�nite absolutevalue. The asymptotic error rate is approached via�1 � �IRSB = log(2)2j�sj�� 1�: (49)As both �s and �� are dependent on �, the asymptotic behaviour deviates from a purepower law behaviour.4. Summary and conclusionsIn this paper we have investigated the threshold boolean perceptron above saturationfor both spherical and binary weight priors. Even for unbiased input and outputdistributions, we �nd that the introduction of a threshold triggers interestingphenomena for �nite stabilities � > 0 which are not otherwise present. Namely, we�nd a second order phase transition in order parameter space at a stability dependentcritical load �p(�), with spontaneous symmetry breaking in the space of thresholds �.This phase transition is driven by the error rate as we �nd that the perceptron withoutthreshold exhibits a higher asymptotic error [�1 = 1�H (�)] than the perceptron withthreshold [�1 = 1=2].Zero stability � = 0 constitutes a special case, as one does not �nd a phasetransition for �nite �. This means that the limits �! 0 and �!1 are notinterchangeable and the \point" f� = 0; � =1g is an unstable �xed point. One couldargue that this point is in fact a �rst order phase transition, leading to a discontinuousjump in order parameter space.We further have identi�ed the bias of the output distribution mo with the externalmagnetic �eld in spin systems that breaks the symmetry in �-space and \smears" outthe phase transition. Whereas a non-zero output bias has therefore a profound e�ecton the performance of perceptrons, we �nd that a non-zero input bias can always beabsorbed by a rescaling of the target stability �. These results also suggest that oneshould not remove the threshold in favour of a ferromagnetic bias in the couplings aswe have found that a threshold can always compensate for this bias but not vice versa.In the asymptotic limit �!1 and �nite stability � > 0, we not only �nd unequalvalues for the asymptotic error rate but strikingly di�erent solutions in order parameterspace for the perceptron with and without threshold, especially, for the asymptoticsof the one-step RSB overlap q0: In the case of the spherical weight constraint, we �ndthat q0 approaches 1 for the perceptron without threshold, whereas q0 decays to 0 forthe perceptron with threshold. For the Ising perceptron we �nd a similar behaviour:The solution with non-zero threshold is characterised by a vanishing overlap q0 forincreasing � and the solution with zero threshold exhibits a �nite limit of q0 forin�nite load which is stability dependent and strictly smaller than 1.It has been argued previously [5] that the above asymptotic behaviour for thespherical perceptron without threshold indicates that one-step RSB cannot be exactat high load. For a correct solution one would expect the smallest overlap scale q0 to



27approach 0 for �!1 as in this limit any weight vector should perform equally well.Recently, it has been shown by performing a 2-step RSB calculation [18] thatone-step RSB is indeed inexact for the spherical perceptron without threshold.Furthermore, it has been proved [18] that any model with a gap in the pattern stabilitydistribution (PSD) (such as the spherical perceptron with or without threshold andGardner-Derrida cost function) necessitates in�nitely many RSB steps to yield theexact result.These �ndings give some support to the validity of the qualitative argument madeabove. A strict application of this argument would imply that one-step RSB is alsoinexact for the Ising constraint, which has been the source of some debate [6, 24, 25].As the PSD of the Ising perceptron with the Gardner-Derrida cost function does notexhibit a gap, the proof in [18] is not able to resolve this issue.We have some doubts if one can have enough con�dence in the qualitative argumentof [5] to argue that one-step RSB is incorrect in the Ising model. First, we believethat one should be very careful to apply such an intuitive argument to models withdiscrete weights. For example, whereas all overlaps in the spherical model convergeto 1 at the capacity limit, leaving just a single solution, the smallest overlap scale q0remains �nite but strictly smaller than 1 for the Ising model, which is initially notreally intuitive (see [6] for a plausible explanation), as it suggests several solutionsat the capacity limit. A similar e�ect may be present in the limit �!1. Second,one may argue, that the argument of [5] can demand q0 = 0 strictly only at � =1,whereas it implicitly assumes a smooth transition of q0 ! 0 for �!1, which doesnot take into account the possibility of a discontinuous transition. We have arguablyfound a possibility for such a discontinuous transition for the case � = 0 at � =1,from the �0-solution with q0 = 1 to the �-solution with q0 = 0.To resolve the issue of the exactness of one-step RSB in the Ising perceptron withGardner-Derrida cost function, it may be worthwhile to reexamine the 2-step RSBsolution in [6] numerically for large � and/or to calculate the stability of the one-stepRSB solution.Nevertheless, results concerning the asymptotic behaviour of the error rate andthe order parameters in this paper suggest that the e�ect of further RSB breakingmay be even smaller for both the Ising and the spherical perceptron with threshold inthe regime of the �-solution than has been found for the �0-solution of the sphericalperceptron in [18]. The one-step RSB solution may therefore remain su�cientlyaccurate for many practical purposes like calculating the capacity of multilayernetworks produced by constructive algorithms [10, 11], where a treatment with a2-step RSB solution is computationally infeasible.AcknowledgmentsAHLW would like to acknowledge gratefully �nancial support by the EPSRC, aresearch scholarship of the Department of Physics of the University of Edinburgh,and the �nancial support and hospitality of the Neural Computing Research Groupat Aston University, where part of this research was carried out. This research wasfurther supported �nancially by EU grant ERB CHRX-CT92-0063. The authors wouldlike to thank Peter Sollich, and especially Andreas Engel for interesting discussions.We would also like to thank David Barber for helpful comments and careful readingof the manuscript.
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