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1. Introduction

Since the ground breaking work of Gardner [1] on the storage capacity of the
boolean perceptron, the replica technique of statistical mechanics has been successfully
employed to investigate many aspects of the performance of simple neural network
models. While most of the research concentrated on exploring the learning ability
and network capacity below saturation (for a review see [2, 3] and references therein),
we will concentrate in this paper on the errors of a boolean perceptron above its
saturation limit, or capacity limit ., working within a replica framework. Earlier
studies [4, b, 6] have examined particularly the cases of zero stability of the stored
patterns, the effect of different error functions on the error rates, and the distribution
of pattern stabilities. Here, we will extend this work by allowing for a threshold
and biased input and output distributions and investigate both real valued (spherical
constraint) and binary weights (Ising constraint).

We find that the boolean perceptron with threshold has a rich behaviour reflecting
the extra degree of freedom introduced by the threshold. In the case of arbitrary
input and output distributions we find that the threshold can always compensate for
a ferromagnetic bias in the weights but not vice versa, which will allow us to argue
that the paradigm of eliminating the threshold in favour of a ferromagnetic bias in the
weights, which has been adopted in some papers (e.g., [1, 7]), should be reconsidered.
The introduction of a threshold enables the elimination of the input distribution bias,
by suitably rescaling the threshold and stability.

Especially intriguing is the role of the threshold for non-zero stability and unbiased
output distributions; above some critical pattern load oy, we find two solutions to the
saddle point equations: One solution has a non-zero threshold and a lower free energy
with an asymptotic error rate of 50%, the other solution is identical to that of a
perceptron without threshold and exhibits a higher free energy with an asymptotic
error rate above 50%. The order parameters show a second order phase transition at
the bifurcation point and have different asymptotic values.

This work is further motivated by the fact that the results of this calculation
can be applied iteratively to yield the storage capacity of a class of networks with
variable architecture produced by constructive algorithms [8, 9], which will be reported
elsewhere [10, 11]. This is possible since these algorithms construct the network
architecture during training, starting with a simple boolean perceptron and adding
more perceptrons only when needed, i.e., when the existing network is incapable
of performing the requested task. The training is performed separately for each
perceptron after its creation and the weights are subsequently frozen. Therefore,
results for the perceptron are sufficient to calculate the capacity limit of multi-layer
networks produced by certain constructive algorithms. So far, only an information
theoretic upper bound has been derived for two-layer networks with fixed hidden
layer to output weights [12]. Statistical mechanics calculations have been hampered
by the inherent difficulties of the replica calculation. Replica symmetric (RS)
treatments [13, 14] violate the above mentioned upper (Mitchison-Durbin) bound.
Other efforts [15] break the symmetry of the hidden units explicitly prior to the actual
calculation, but the resulting equations are approximations and are difficult to solve
for large networks.

The paper is structured as follows. In Section 2 we introduce the model, the
boolean perceptron with threshold (and spherical or Ising constraint) and correlated
output and input distributions. We briefly explain the replica framework and outline
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the one-step replica symmetry breaking (RSB) calculations for the two constraints
for both the free energy and distribution of pattern stabilities. This is followed in
Section 3 by a discussion of the error rate and the pattern stability distribution of the
two boolean perceptron models. We finish with a discussion of the significance of the
results and some concluding remarks in Section 4.

2. Replica calculation of boolean perceptron

In this section we will outline the replica calculation for the boolean perceptron trying
to learn a set of random dichotomies above its saturation limit «.. The calculation is
similar to [4, 5] for real valued weights and a spherical constraint and to [6] for binary
weights, i.e.; an Ising constraint; however, we allow for a threshold and biased output
and input distributions. In the following the real valued weight boolean perceptron
will be referred to as the spherical (boolean) perceptron, whereas the binary valued
weight boolean perceptron will be referred to as the Ising (boolean) perceptron. This
section is divided into three parts. In Section 2.1, the replica calculation for the free
energy of the perceptron above saturation is explained briefly. In Section 2.2, the same
framework is then extended to calculate the distribution of pattern stabilities for the
perceptron. In Section 2.3, we will outline the differences for the calculations of the
Ising perceptron and present the resulting equations.

2.1. Free energy of the spherical perceptron

In the capacity problem the aim is to adjust the parameters of a spherical perceptron,
the synaptic weight vector W € RY and threshold § € R, to minimise the error on a set
of p = aN input-output mappings ¢* € {1, 1} — ¢*# € {-1,1} (p=1,...,p) from
an N-dimensional binary input space to binary targets. The output of the perceptron
is hereby determined by

ot = sgn (ﬁwgu - 9) = sgn(h*) (1)

where sgn(x) is the sign of #, and h* is termed the activation of the perceptron. We
define the error function to be

E=>"0(k-M), (2)

where A = (#h* and O(x) is the Heaviside step function, which is 1 for # > 0 and
0 otherwise, and x is the stability with which we require the patterns to be stored.
This error function, counting the number of misclassifications, is often referred to as
the Gardner-Derrida cost function.

The calculation will be performed in the thermodynamic limit N — oo with finite
example load & = p/N. In the following, we will be interested only in the minimum
error possible and will therefore consider zero-temperature Gibbs learning, i.e., we
consider the free energy f = —p 'logZ for 8 — oo, which is assumed to be self-
averaging in the thermodynamic limit. Hence

(1) == Jim fim fogz) == im i~ ((1og [auewy== ) 3)

f—o00 N—o00
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where {(-)) is the quenched average over the distribution of patterns, consisting of
integrations over biased input and output distributions. The binary input distribution
is independent of the pattern and site indices p and j:

1 1
P = P = 504+ m)s(1— &)+ 5(1—m)o(1 +6) (10
The output distribution is also independent of the pattern index:
1
S (1 =me)o(1+¢), (40)

PC) = PO = 31+ mo)s(1 - Q) + 5

where m; and m, represent the input and output bias respectively.
Furthermore, in the case of real valued weights, we enforce a spherical constraint
on the weight vector
N
dp(W) = 6(WW — N) [[ dWi , (5)
i=1
to avoid the invariance (W, &) — (AW, Ak). To be able to pick out the two possible
error sources (wrongly on, where the requested target is ¢(# = —1 but the output

is ¢ =1 and wrongly off, where {* =1 but o# = —1), we introduce auxilliary
variables €t e~ in the error function [Eq. (2)]

E=Y 0(r—M[e0(") +et0(—¢")] ZV/\“/-{C“ (6)

where V' is the error measure for a single example and has been introduced for
convenience.f The derivatives of the free energy with respect to ¢t or ¢~ at
€T = ¢~ =1 will give us the wrongly on and wrongly off errors respectively.

To be able to perform the quenched average we make use of the replica
trick {log 7)) = limp,_o({Z") — 1)/n. After application of standard techniques and
introduction of the order parameters:

N
1 1

op = —=WIW? (for o < p), M, = — w7, 7

Qo = + (for ¢ < 1) 99 ©

their Lagrange multipliers Qap, M, and the Lagrange multiplier E, associated with
the spherical constraint§, the replicated partition function is

. dM dE, dQ,pdQ,,

e[ L) ()
xexp{

where

(8)
GO(QU[N )+aG (Qap, 2 a ZE _ZQUpQUp]}
GO(QUP’E0>:IOg{/ HdW"eXP [——ZE W"W"+ZQMWUWH (9)

a<lp
a<lp

t This is also consistent with earlier work[5] and allows in principle a calculation for an arbitrary
cost function.

1 One could also allow p = ¢. In this case Qo6 = 1 and Qo’o’ = Eg due to the spherical constraint.
§ The contribution of M, actually vanishes in the thermodynamic limit.
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1s the prior constraint Hamiltonian and
dXsdX, i
Gr(QapagaaMU):log</_oo (1:[ I ) exp{_ﬁv(/\aaﬁaC)_lza:/\a/\a
1 (10)
—iC> A (0, — miM,) — (L= m}) [Z A2y AUApQUp] }>
g g C

a<lp

is the replicated Hamiltonian, and where <>C denotes an average over the output
distribution.

2.1.1. The replica symmetric ansatz To make further progress one has to make
an assumption for the structure of the replica space. The simplest assumption is
that replica symmetry holds (which is believed to correspond usually to a connected
solution space):

Qop=¢a and C:)Up = (for o < p) (11)
M,=M, 0,=10 and E,=F (for all o)

Inserting the above anséitze into Eqgs. (9) and (10) and taking the n — 0 limit yields

RS (jl 1 n o
=—— — = log(F L
Gy 2 F+ 1, 20g( +4¢)

G = < [t tostz ql,n,<e>]> ,

¢

(12)

where all integrals without explicit limits are from —oo to +o0o, Dt = dt exp(—t?/2)/\/ 27
and the function F  is given by

fRs<t,ﬁ,q1,n,<9>=/¢%exp (—6 [mmn%}), (13)

where = §(1 — ¢,) and
A0 —miM)

\/1—mi2

When taking the 8 — oo in order to access the ground state with least errors only, one
has to distinguish two regimes. Below the capacity limit o (above which the training
error becomes strictly positive), ¢; < 1 even for # — oo. At and above the capacity
limit, ¢, — 1for 8 — oo, because the volume of the individual solution spaces vanishes.
We therefore make the self-consistent ansatz for o« > a. that « = 3(1 — ¢,) remains
finite in the zero-temperature limit. In this case, the integral over A in (13) can be
calculated by the saddlepoint method; the exponentional is evaluated at A = A,, where
Ao minimises the square bracket for given t. After calculating A,(¢) for the Gardner-
Derrida cost function and eliminating ¢, and E, the RS free energy at et = ¢ =1
simplifies to:

U(A) (14)

\/ﬂ—r 2
<<fRs>>:a< 5 Dt%ﬁ(mq»;%, (15)



where
K+ (0 —miM)

T=14(k) = ﬁ, and H(u) = /th. (16)

The free energy has to be evaluated at the saddlepoints with respect to the variables
x and #. The capacity limit a. can be calculated from the saddlepoint equations by
taking the limit  — oo. A more detailed examination of the free energy and the
saddlepoint equations is deferred to Section 2.1.3.

Above the capacity limit a. it is evident that different solutions can misclassify
different patterns and the solution space will in general be disconnected. It has also
been previously shown that in this case the replica symmetric saddle point is locally
unstable [16], and the Parisi scheme of successive steps of replica symmetry breaking

(RSB) [17] must be employed.

2.1.2. The one-step RSB ansatz Here, we will restrict ourselves to a one-step RSB

calculation. We note that it has been shown recently that for the spherical perceptron

with the Gardner-Derrida cost function infinitely many RSB steps are necessary to

derive the correct result [18]. Although one-step RSB is therefore incorrect it is a

very good approximation, as a 2-step RSB calculation carried out for the spherical

perceptron without threshold yielded only minor corrections in the free energy [18§].
The ansatz for the one-step RSB is that ,, is a nxn matrix

Ql QD Qu

(Qap)nn — QD . ’ (17)
: . . QD
QD QD Q1

nn
where (), is a m xm matrix with elements ¢, and @, is a m xm matrix with 0 on the
diagonal and ¢, elsewhere. The ansatz for ), has the same block structure as for
Qs, with matrices Q, and Q,. We further assume

M,=M, 6,=0 and E, = F (for all o), (18)

similar to the RS case (11). The order parameters ¢, and ¢, can be interpreted as
the typical overlap between pairs of weight vectors in the same and different solution
spaces respectively. Clearly, if the solution space is connected ¢, = ¢,, which is the
case for a < a., and we recover replica symmetry. Again using the above ansatze in
Egs. (9) and (10) and taking the n — 0 limit yields

1 (jo 1 S N 1 (j1 - (ju

Gy*® =-— — - log(E+§¢,) — =—log (1— - )
DBt q) - ma -4 2 2m B+, 19)
1
GIF,{SB = </DtEIOg [fRsB(tamaBa qaaQIaKjaCG)]> 3
¢
where the function F_, is given by
dA
fRSB(tamaﬁa qaaQIaKjaCG) = DZ —F——=€Xp - 6 V(Aaﬁac)
V27l —qy)

(20)
_|_

<¢+¢q—ot+mwzm’”
20 T—1 |



with ¢ as in (14).

Similar to the RS case, we are interested in the  — oo limit where ¢; — 1 with
z = f(1 — ¢,) finite. The A-integral in (20) can again be evaluated at the saddlepoint
A = Ay, where A, minimises the square bracket in the exponentional for given z and
t. Furthermore, the replica space dimension m — 0 (8 — o0) as we only access one
solution and it becomes exponentially unlikely that any other solution is visited [17].
We therefore make a second self-consistent ansatz that w = m/(1 — ¢,) remains finite
in the zero-temperature limit. After some algebra, including determining A,(z,¢) for
the Gardner-Derrida cost function and elimination of §,,j, and E, the one-step RSB
free energy for ¢t = ¢~ = 1is given by

log(1 4+ wAgq)

2w

{(—frss)) = ﬁ</Dt log [Fran(t, w, z, qo, K, CG)]>£|_2x(1 _|q_Dqu) + ,(21)

where 7 is as before (16), Aqg = 1 — ¢,, and the function F,_, has simplified to

V2z—p
2
fRSB(t’waxaquacg) :/ \/A_quexp [—% (\/qu —I—u) ]
VA (22)

VAq VAq

with g = 74 /qot. The free energy has to be evaluated at the saddlepoints with
respect to the variables w, x, ¢, and 6.

v H (L) pevTH (@) ,

2.1.3.  Saddlepoint equations and training error Examining both the RS (15) and
the one-step RSB (21) free energies more closely, one sees that the ferromagnetic
bias M of the weight vector (7) appears only in the definition of 7 (16) and can be
set to zero without loss of generality (w.l.o.g.). The order parameter M is therefore
superfluous, i.e.,; any ferromagnetic bias in the couplings can be compensated by an
adjustment of the threshold 8. This is in contrast to the usual paradigm, which
eliminates @ in favour of M (e.g., [1, 7]), and therefore reduces the number of actual
parameters of the percpetron. However, this is clearly only possible if m; # 0 and will
lead to large absolute values of M for small m;.

We further note that the bias of the input distribution m; appears only in the
definition of 7 (16) also and its sole influence is a rescaling of the threshold and the
stability. Therefore a biased input distribution has the same effect on the performance
of the perceptron as the increase of the stability for an unbiased input distribution.
This can be understood in geometric terms. If the input distribution is unbiased
input vectors lie randomly distributed on the edges of the unit hypercube and two
distinct patterns have a typical overlap of zero. Biased patterns on the other hand
are correlated and have a typical overlap of m? with each other, i.e., they concentrate
on a “conelike” section of the hypercube. The typical distance between patterns is
therefore reduced by /1 —m?2. Any solution of the weight vector corresponds to a
hyperplane which seperates the two kind of patterns. The achieved stability is half
the distance of the two correctly classified patterns with the shortest seperation across
this plane and hence the stability decreases by /1 — m? as well. Only at zero stability

t The fact that M is redundent is a direct consequence of the fact that the integral over M does not
contribute in the thermodynamic limit.
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does the increase of the input bias have no effect on the performance of the perceptron.
In the following, we will therefore set m; = 0 w.l.o.g..

The saddlepoint equation of the derivative of the free energy with respect to 4 at
€t =¢ =1 gives

20—T
0= <C Dt (t+ 7')> and
. .

(23)
0= <</Dt tlog [fRSB(t,w,x,qu,H,C9)1>

¢

for RS and one-step RSB respectively. For zero bias, one can readily see that § = 0 is
always a solution to this and the other saddlepoint equations; regaining the results of
the percpetron without threshold. However, this does not necessarily imply that this
is the only solution to the saddlepoint equations, as demonstrated in Section 3.

Taking the derivatives of the free energies with respect to e~ and et at et = ¢~ =1
and dividing by « gives the error rate (i.e., the number of errors divided by the total
number of patterns) of wrongly off and wrongly on patterns respectively

O on 1
GRi;f/ = 5(1 +mo)H (\/29:— KZFH) ,

e~V H \/2 — /¢t — 6
off/on_ 1:|:mo /Dt z \/q_ K )

€ =
ReB Freptyw, x, qo, k&, £0)

bl

where we have set m; = 0 w.l.o.g..

We note that we find numerically no difference between the total training errorf
and the free energy in the thermodynamic limit for both RS and one-step RSB
and conclude that the normalised entropy s = S/N must diverge sublinearly or
logarithmically for 7 — oo. One can calculate the first order finite temperature
correction of the free energy for both RS and one-step RSB analytically, and find
that it is negative and proportional to log(Agq), and equal to the low temperature
entropy. Unlike in the binary case, where a negative entropy is physically impossible
and therefore an indication that the employed replica ansatz breaks down, a negative
entropy has no such physical meaning in the real valued case, due an arbitrary entropy
offset.

2.2.  Pattern stability distribution (PSD)

The pattern stability distribution (PSD) P(A) is of interest as it provides the distance
of stabilised (A > k) and unstabilised patterns (A < &) to the given threshold
stability «, 1.e., it gives an idea how seriously patterns are misclassified. This extra
information will be quite helpful in examining the already mentioned bifurcation point
in order parameter space in Section 3. For other error functions than the Gardner-
Derrida cost function (e.g., the perceptron or adatron cost function), the integration
of the probability densityi p(A) over the unstabilised patterns yields the error rate ¢
[21, 5], which is otherwise inaccessible. The PSD is further of great importance to the
dynamics of related attractor neural networks, by determining the basin of attraction
of the memory states [19, 20].

t That is the error rates multiplied by o.
1 We use uppercase P notations for probability distributions and lowercase p for probability densities.
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The PSD P(A|D) is in general dependent on the instances of the data
set D ={(&" ¢"\p=1,...,p} As we are interested in its average value
P(A) = {P(A|D)), we quench over the instances of the examples

mm#wwwz«éﬁm m{ﬁzvvnw>m—m», (29)

where the pattern stability of pattern 1 is calculated w..o.g. generality as the
pattern distribution is independent of the pattern index p. Here, du(W) is the
spherical constraint (5), but the above equation holds for any weight prior. In the
thermodynamic limit, one can calculate this average using the replica trick. The
calculation is similar to to that of the free energy except for the average over the first
pattern [19]. After some algebra one finds for the RS ansatz

RS t 6aQIaK CG) (A_A)
pRs </Dt Rst 3 g Cg) >C, (26)

where F.. (13) has to be evaluated at the saddlepoint of the free energy. With the
one-step RSB ansatz one finds a similar expression to Eq. (26) for pres(A) only with
Fre replaced by F..p (20).

For # — oo above the capacity limit e, both prs(A) and preg(A) can be simplified
along the lines of [21, 5] as the A-integral in both F,, and F,., can be evaluated at
their respective saddlepoint A,.

Calculating A, for the Gardner-Derrida cost function equates the RS probability
density

s [Tl @0 T
pRs(A)—<5(A )_T Dt + ) p[ 2¢>]

O (n—A—T=mIVax) [1 ]>

27(1 — m?)

1

_|_

where # and # have to be evaluated at the saddlepoint of the free energy (15) as
mentioned above and ¢ = ¢(A) with ¢ as in (14). The PSD has three terms, a
o-function contribution for A = &, 1.e., at the error boundary, and two Gaussian

contributions, which leave a gap of width \/1 — mZ?+/2z.
In the one-step RSB ansatz, the probability density can be calculated similarly

leading to
(t,w, z,q, &, C0)
Dt RSB ) 2
Pren(A </ ) (28)

where the denominator F,, is identical to (22) and the numerator is given by

V2z—p
N~ 2
NRSB(tawa$aq0aﬁaC9) :6(A_K:)/ Dzexp [_%(\/qu—i_ﬂ) :|
O(A — k) [ 0> ]
exp |——— 29
2rAq(1 — m?) P 2Aq (29)

_|_

R LM

27 Aq(1 — m?)
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where ¢ = ¢ + /¢, and the values of the order parameters x, w, ¢, and ¢ are again
determined by the saddlepoint of the free energy (21).

Comparing the one-step RSB with the RS PSDs we find three similar contributions,
a 8-peak at the stability k, and two exponentional terms, seperated by a gapwidth of
91— mf\/ﬂ In general, one finds [5] that one-step RSB has a smaller gap, which
is formally due to a reduced saddlepoint value of z, and a reduced weight of the 6-
contribution. The one-step RSB distribution has also lost the gaussian form of the
RS distribution, due to the presence of the denominator and the integration over ¢.
We further find a correction to the third contribution, which represents unstabilised,
l.e., erroneous, patterns, which has acquired an extra supressive exponentional term
e~ T  As we already pointed out in Section 2.1.3, the role of a non-zero input bias
is the rescaling of the threshold @, the stability & and the pattern stability A with a
factor of /1 —m?, and can therefore be set to zero w.l.o.g..

It 1s worth mentioning that the gap and the é-peak are a feature of training
algorithms above saturation employing the Gardner-Derrida cost function [22]. This
is due to the fact that an algorithm achieving least errors attempts to stabilise the
least unstabilised pattern, until any movement of the hyperplane will destabilise a
pattern lying on the threshold decision boundary, leading to a fraction of patterns
exactly on the decision boundary and leaving a gap between stabilised and unstabilised
patterns. The above work has been complemented by a numerical study [23], where
the numerical PSD exhibits a gap and a é-peak which are both finite but smaller than
the theoretical one-step RSB predictions within the accuracy of the simulations. This
is consistent with a recent proof [18] which showed that any model exhibiting a gap
in the PSD necessitates infinitely many RSB steps.

2.3. Ising perceptron

In the case of the Ising perceptron the calculation is very similar. In fact, the
calculation of the replicated Hamiltonian G (10) is exactly the same as it only
depends on the quenched average over the training examples. The difference is
therefore mainly in the prior constraint Hamiltonian Gy (9), where the integration
over weight space is performed. Since the weight vector of the Ising perceptron is
binary, i.e., W € {—1,1}" the measure in weight space [see Eq. (5)] becomes a sum
[du(W) = Hf\;l > w,=+1, and all terms with the Lagrange multiplier E, associated
with the spherical constraint vanish in Eq. (8). The prior constraint Hamiltonian
equates to

GY(Q,,) = log {H exp l— > QMW"W"] } . (30)

led a<lp

Again, using two ansatze for the structure in replica space, RS and one-step RSB
identical to those made in Section 2.1, one finds

GRS (4,) = % —I—/Dtlog [2cosh (1/21)] (31)

Al m. A 1 — —~ — m
GBRSB(dlan): _%+E(ql_qo)+E/Dtlog |:/DZ 2 cosh (t Qo+ 2/ Q1_QD):|

where TRS(B) stands for the RS or one-step RSB ansatz for the Ising perceptron.
Great care has to be taken in the 8 — oo limit, which is discussed in detail in [6],
here we will only outline the main results. One finds that the entropy of the RS
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solution is negative for a > al with ¢, <1 in the zero-temperature limit, and is
therefore incorrect above af. Studying the one-step RSB solutions identifies o as
the capacity limit «l. The RS error only becomes strictly positive for o > o, where
q; — 1 with # = 5(1 — ¢,) finite and the RS free energy of the Ising perceptron can
be simplified [16], resulting in

Vazr—r1 -
(fns) = a < DI “;—> 11 (Var - T)> . (32)
. <

which is identical to the RS free energy of the spherical perceptron (15) but for a
constant 2/7 in the last a-independent term. The RS solution of the Ising perceptron
at « is therefore same as the RS solution of the spherical perceptron at & = 7 /2,
which holds also for error rates and the distribution of pattern stabilities. The RS
solution of the Ising perceptron will therefore not be discussed further.

However, as already mentioned above, the RS solution is incorrect for o > «af and
8 > [, where one finds one-step RSB solutions, which are characterised by ¢, = 1 and
¢, = oo for finite 8. One further finds m = 5./5, ¢o — 0 and makes the self-consistent
ansatze that v = m@ and y = m+/q, are finite in the zero-temperature limit. Inserting
these ansitze back into (32), one finds GF*®(o00, ¢,) = GF5(y?)/m. The replicated
Hamiltonian GiF*® (19) is calculated similarly to the spherical perceptron, with the
above ansatze becoming equivalent to z — 0 and w — co with wz finite. The one-step
RSB free energy of the Ising perceptron is therefore given by

« 1 Aqy?
{(—firss)) = 5 Dtlog [Fipes(t, v, 9,40, %,(0)]) + - Dtlog[2 cosh(yt)] — , (33)
¢
for €t = ¢~ =1 and the function F, ., is
—v —v H
Frres(t 0,4, ¢0, 8,(0) =™ + (1 —e™")H (E) , (34)

with p as before. The free energy has to be evaluated at its saddlepoint with respect
to the variables v, y, ¢, and #. The normalised entropy of the Ising perceptron can be
shown to be identical to zero [6].

Identical to the spherical perceptron the ferromagnetic bias on the weights M and
the bias of the input distribution m; can be set to zero w.l.o.g.. We also find as before
that # = 0 is always a solution to the saddlepoint equation for zero output bias and
the error rates of wrongly off and wrongly on patterns are given respectively by

OH/O“— /Dt e H (V2 = it = £ F0) (35)

€ =
e Frines(t, 0, Y, 4o, £, £0)

The pattern stability distribution (PSD) density prss(A) of the Ising perceptron
within a one-step RSB ansatz can be calculated similarly to the spherical perceptron
in Section 2.2. In the zero-temperature limit, we employ ¢ — 0 and w — co with wz
finite to find

(t, 05 0
pIRSB </Dt IRSB v, Y, o, K, )> (36)

IRSB t U, Y, 40, K, C@)

where the denominator F, ., is identical to (34) and the numerator is given by

[OA—kK)+e"O(k — A)] 0>
27 Aq(1 — m?) P [_m]  (37)

MRSB(ta Y, Y,qo, K, CG) =
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with ¢ as in (29) and the values of the order parameters y, v, ¢, and 6 are evaluated at
the saddlepoint of the free energy (33). The PSD of the Ising perceptron has a common
Gaussian numerator centered around g, but for an extra exponential surpression of
the unstabilised patterns A < x proportional to e™7.

Comparing the PSDs of the spherical and the Ising perceptron, shows no difference
within the RS ansatz besides the already mentioned rescaling of «. However, one finds
striking differences within the one-step RSB treatment: The gap in the distribution as
well as the é-peak contribution at the threshold boundary & have vanished in the PSD
of the Ising perceptron in contradiction to [22] (see Section 2.2). However, this could
be explained by the fact that the Ising perceptron cannot adjust its decision boundary
continuously, due to the discreteness of the weights. Therefore, one may expect that
unstabilised patterns lie arbitrarily close to the decision boundary and that patterns
do not accumulate at the threshold stability.

Whereas it has been shown previously that the one-step RSB ansatz for the
spherical perceptron is not exact [18], which is formally due to the gap in the PSD, the
Ising perceptron does not exhibit this gap and there has been some argument whether
one-step RSB is exact for this model.7 Krauth and Mézard [6] have carried out a second
RSB step and have found no solution different to the one-step RSB result, although one
should mention that most of their numeric work was carried out around the capacity
limit. Fontanari and Meir [24] have calculated the entropy of the Ising perceptron in a
microcanonical approach and found that their RS solution is identical to the one-step
RSB solution in the canonical approach. They calculated that the microcanonical RS
saddlepoint is locally stable for all «, which also suggests that the ansatz is correct,
as a breakdown would require that the RS saddlepoint is locally stable but globally
unstable even for & — oo. A third approach by Horner [25] investigating the learning
dynamics using dynamic mean field theory which does not rely on the replica trick,
indicates a slightly different picture. He finds that the fluctuation dissipation theorem
(FDT) holds for high temperatures and the dynamics are ergodic validating the use
of RS. For lower temperatures ergodicity is broken but one finds that a quasi FDT
(QFDT) holds, parameterised by a variable m, which has a similar role as the one-step
RSB parameter m but has to be chosen inconsistently to the choice of m in replica
theory. These dynamics were found to be strictly stable for infinite times indicating
that no further RSB steps are necessary in this regime. Furthermore, there exists
a third regime with additional diverging time scales which corresponds to further
breaking of replica symmetry.: However, the relevance of dynamic mean field theory
for validating replica ansatze is debatable.

3. Discussion

Calculating the saddlepoint solutions for the order parameters and the error rates as
a function of the normalised example number « for a range of stabilities & and output
biases m,, we find striking differences in the solution space to the case of a perceptron
without threshold even for zero (output) bias [5, 6].

Since we found the zero bias results the most intriguing, we will limit most of
our discussion to this special case, as we find that the introduction of a single free

1t One-step RSB has been proved to be exact for several models, e.g., for the generalised Sherrington-
Kirkpatrick (SK) spin glass with p = co spin interactions, which is equivalent to the random energy
model and can be solved exactly [26].

1 An explicit phase diagram is given only for the perceptron and adatron cost functions.
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Figure 1. The total error rate ¢ of the spherical perceptron as a function of « for
# = 0.1 is predicted by one-step RSB to be larger than the estimate of RS. For oo > ¢
both theories initially predict a portion of 1/2 for wrongly on errors €°® indicating
zero threshold (see also Figure 2). Above a critical op, €°" decreases abruptly and
quickly approaches zero signaling a solution with non-zero threshold. This solution
exhibits a lower asymptotic error rate than a perceptron without threshold. The
predicted value of ap is smaller for one-step RSB than for RS.

parameter to the perceptron, a threshold, can change the space of solutions accessible
to the perceptron radically even for unbiased input and output distributions. We
will first examine the order parameter solution space and the total error rates of
the spherical perceptron and the Ising perceptron in Sections 3.1 and 3.2. This is
followed by a discussion of the pattern stability distribution (PSD) in Section 3.3 and
a discussion of the phase transition found in parameter solution space as a function of
the stability x in Section 3.4. We will further assess the influence of a biased output
distribution in Section 3.5. As we have discussed in Section 2.1.3, a biased input
distribution can be absorbed through rescaling of the stability and therefore need not
be discussed in more detail.

3.1.  Error rates and order parameter solution space of the spherical perceptron

In Figure 1 we show the total error rates € and the percentage of wrongly on errors "
for the spherical perceptron in both the RS and the one-step RSB ansatz, for my, =0
and £ = 0.1 as a function of . Below the capacity limit o, the error rate e(«) is
identically zero. For a > a., we find that the RS estimate of the error rate is always
below the one-step RSB estimate for all « > a, and replica symmetry is broken as
expected [16]. In Figure 2, the one-step RSB overlap ¢, is plotted as a function of «
in the same scenario, indicating the degree of replica symmetry breaking.

In Figure 1 one can also see that for o > «a., the proportion of wrongly on errors €
is initially 1/2. This corresponds to the threshold @ being identical to zero as one can
see in Figure 2. This solution for both RS and one-step RSB could have been expected
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Figure 2. The prediction of the one-step RSB overlap gqo for the solution goes to
zero as o — oo for the perceptron with threshold, whereas it approaches one with
zero threshold. The threshold as a function of « in the one-step RSB and the RS
ansatz is also included.

from examining Eqs. (23). However, above a critical value of the normalised example
number a > ap, we find a second solution to the saddlepoint equations, which is
characterised by a non-zero threshold and a fraction of wrongly on errors smaller than
1/2 (see Figures 1 and 2). The value of o}, can be seen to be significantly smaller for
one-step RSB than for RS. This is found to be true for all finite stabilities, which will
be examined in more detail in Section 3.4 where we examine the phase transition as
a function of the threshold stability «.

One should note that although a zero threshold solution (to which we will refer as
0,) still exists and is identical to the solution of a perceptron without threshold, it is
however not a physically viable solution for the perceptron with threshold as it exhibits
a higher free energy (i.e., larger error rate, as shown in Figure 1) than the non-zero
threshold solution (to which we will refer as #) and is therefore to be neglected in the
thermodynamic limit. This illustrates that a solution to the saddlepoint equations
found for any given replica ansatz i1s not necessarily unique.

Going back to Figure 1, one finds for further increasing & — oo the error rate
of the 6,-solution approaches an asymptotic error rate which is higher than 1/2, the
asymptotic error rate of the #-solution. The qualitative difference between the error
rates can be better understood by examining the PSD and we will therefore defer the
discussion of the error limit to Section 3.3.

The bifurcation point in solution space is a second order phase transition as
all order parameters [see e.g., 6(«) and ¢o,(«) in Figure 2] are continuous but non-
differentiable for o = a,. In particular, for the threshold the numerical data strongly
indicates the functional relationship

0 o [log(a) — log(ap)]" (38)
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for both RS and one-step RSB theory with an exponent 4 which is in very good
agreement with the mean-field theory exponent of 1/2; and a prefactor which is &-
dependent and consistently larger for one-step RSB. We further have spontaneous
symmetry breaking in the space of thresholds # as the solution is invariant under sign
change of . The external field in this case is the output bias m, as it breaks the
symmetry in #-space and “smears” out the phase transition, as will be studied more
closely in Section 3.5.

The phase transition at ap stems from the competition between optimising the
weights (or hyper plane angle) and a deterministic bias in the output of the perceptron
which 1s controlled by the threshold. Whereas it is self-evident that for a biased
output distribution it is also sensible to bias the output of the student with a non-zero
threshold, this is only the case for an unbiased output distribution when the error rate
becomes large enough for a given stability x. To understand this more clearly, the
distribution of pattern stabilities together with the total error rate is studied around
the phase transition in Section 3.3.

In order parameter space we find qualitatively very different solutions, as can
be seen in Figure 2 for the order parameters ¢, and 8. For the #-solution, we find
the threshold increases towards infinity following the above functional relationship
of Eq. (38) and ¢, decaying to zero, where we find numerically ¢, o< 1/cr, with the
possibility of minor logarithmic corrections. For the f,-solution on the other hand g,
approaches one. To investigate the functional behaviour of the f,-solution in more
detail, one can expand the free energy using the numerically justified ansitze z < 1/«
and w o v/ for @ — oo. Although we find the same scaling behaviour as [5], we
have found that their prefactors are inconsistent with our analytical solutions and the
numerical data. In particular, the solutions of the order parameters are to leading
order

2 9 s/ 4 .

q:m, x:ZW’ and w:§ﬁe #4 Ja [log o] 4. (39)
These solutions are however only good approximations provided Ag is small and
log o > log(log ), i.e., in general a > 10'° and is therefore not very accurate in
the region where numerical solutions were obtained. The solutions suggest that for
increasing o the degree of RSB becomes more severe as m [m = wa/f] and (1 — ¢,)
[1 — ¢, = /0] decay to zero faster than the temperature.

For the solution with 8 # 0, we have not been able to find closed form asymptotic
solutions to the saddlepoint equations. In fact, closed form asymptotic solution are
even infeasible for the much simpler RS theory. The numerical analysis is quite difficult
for both z and w; w and wx may at most diverge algebraically in log o with powers
smaller than one, whereas x seems to have a similar log a-behaviour, but the power
is even smaller in magnitude and its sign seems to be & dependent. As the error in
the numerical calculation of the order parameter solutions increase with « and the
prefactor in the power laws in loga are very small, we were not able to determine
the value of the powers accurately. A divergent behaviour of wz indicates that the
degree of RSB becomes less severe for increasing «, which should be contrasted to the
fo-solution where the degree of RSB becomes worse.

We find the different asymptotic behaviours for the two sets of order parameter
solutions puzzling; especially, the asymptotics of the order parameter g, — the
typical overlap between two replicas in different solution spaces. Whereas ¢, decays
algebraically in « to zero for the #-solution, 1.e., weight vector solutions become



16

on

p -
M T T TTTm T T T Ty T 1T T 1T T 1T

10° 10° 10* 10°
8}

Figure 3. The error rates ¢ are shown as a function of o with x = 0.1 for the Ising
perceptron within the one-step RSB ansatz. Similar to the spherical perceptron there
is initially only one solution with a fraction of 1/2 for wrongly on errors €° and zero
threshold (see Figure 4). Again we find a bifurcation point in solution space at a

critical ap, which is smaller than for the spherical perceptron and similar behaviour
601’[

of the fraction of errors.

totally uncorrelated, 1t approaches 1 logarithmically for the ,-solution, 1.e., the weight
vector solutions become absolutely correlated. Tt has been argued before [5] that this
asymptotic behaviour for the spherical perceptron without threshold is incorrect (and
one-step RSB must therefore be inexact at least for high storage level), since one
should expect ¢, to approach 0 for @« — oo as in this limit any weight vector should
perform equally well on the training data. More precisely, for loads « greater than
the capacity limit «., the perceptron classifies only a subset of the examples correctly
and misclassifies the rest. For moderate loads and small error rates, there must be a
significant overlap between the sets of examples two weight vector solutions classify
correctly. Therefore, the average overlap between weight vector solutions should be
non-zero and hence, ¢, > 0. For very large « and large error rates ¢, the smallest
possible overlap between two sets of correctly classified examples should decrease} and
since the patterns are uncorrelated, the correlations between their respective weight
vector solutions should decrease similarly. Hence, the smallest average overlap scale
in the replica ansatz should approach 0 for o — co.

We will later come back to this argument and the issue of the breakdown of one-step
RSB in the light of the asymptotics of the order parameter ¢,, especially in comparison
with the asymptotic solutions of the Ising perceptron, which we will present below.

3.2.  Order parameter solution space of the Ising perceptron

As mentioned in Section 2.3, whereas it has been established that one-step RSB

t In fact, for the perceptron with zero threshold and x > 0, one finds ¢ > 1/2 for a large enough and
the sets of correctly classified patterns for two solutions could be disjoint.
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Figure 4. The one-step RSB overlap g of the Ising perceptron for the #-solution
goes to zero as o — oo, whereas it approaches a finite value (g0 = 0.51114) for the
fo-solution. The threshold as a function of a grows logarithmically to infinity.

is not exact for the spherical perceptron there has been some argument whether one-
step RSB is exact for the Ising perceptron, and it is therefore useful to compare the
solution in order parameter space and their asymptotics for the two weight priors.

In Figure 3 we show the evolution of the error rates and the fractions of wrongly
on errors and in Figure 4 the corresponding values of the order parameters ¢, and
@ for the Ising perceptron in the one-step RSB ansatz in the same scenario, i.e., for
me =0 and k = 0.1. We find certain similarities but also striking differences to the
results for the spherical perceptron. At the capacity limit o, ¢, does not approach 1
as 1n the spherical perceptron, indicating a single solution in weight space, but a
finite value ¢, < 1, 1.e., several correlated solutions exist at al. As for the spherical
perceptron, the solution to the saddle point equations is initially unique and exhibits
a zero threshold. As the error increases for growing «, we find a similar second order
phase transition in order parameter space, with the emergence of a second solution to
the saddle point equations characterised by a non-zero threshold at o = a,. For the
threshold, the numerical data supports the same mean field power-law behaviour of
Eq. (38).

In the asymptotic limit of infinite example load, we again find that the RSB overlap
¢o approaches a finite limit for the #,-solution, which is k¥ dependent but always strictly
less than 1, whereas it converges against zero for the #-solution, following a power-law
decay ¢, oc o™t

We further find for the Ising perceptron without threshold that the order parameter
y approaches a finite value as ¢,, whereas v, which is the equivalent of wx in the
spherical case, decays as v o< 1/4/ax, similar to the spherical perceptron, indicating
that the degree of RSB becomes more severe for increasing «.

We would like to point out that the asymptotic result of ¢, violates the qualitative
argument in [5], which demands g, — 0 for @ — o0, although it has been argued that
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one-step RSB may be exact for the Ising perceptron. In order to exclude with certainty
that no solution to the saddlepoint exists which is characterised by ¢, — 0, we have
carried out substantial numerical and analytical work for the special case kK = 0 even
for a > 101° where the numerical solutions to the saddlepoint equations of Eq. (33)
become unreliable due to the inherent inaccuracy of the numerical integrations. The
saddlepoint equations were expanded in a Taylor series in v, for which the dominant
terms of all integrals can be solved analytically for x = 0. This expansion was
in excellent agreement with previous results and also provided accurate results for
« values, where the solutions to the full equations were inaccurate. However, an
extensive numeric search for solutions with ¢, and y small was unsuccessful even for
a > 10299, This could be confirmed by the fact that algebraic saddle point equations,
obtained by expanding the equations further for small ¢, and y, have only unphysical
complex roots.

In the numerical analysis for the f-solution, it is again difficult to find the exact
power law exponents and possible logarithmic corrections. However, we find exact
relationships between order parameters. The conjugate order parameter y decays as
1/\/a. This suggests a relationship with ¢, as y?  ¢,, and indeed we find ¢,/y? ~ 1
for large «. The order parameter v, diverges logarithmically in o and we find v/6 ~ 2k
as the asymptotic behaviour, again indicating that the degree of RSB of the #-solution
decreases for large «.

These functional relationships can be confirmed by a series expansion of the free
energy around ¢, = 0 and y = 0, followed by an asymptotic expansion in # and
v, where we assume} w.l.o.g. # > 0. The later expansion i1s however only valid in
the region where 6 — k > 1. The saddlepoint equations of df/0y and 9f/98 give to
leading order ¢, = y* and v = 2«6, in agreement with the numerical data. Inserting

Of/0v in 9f/0q, gives
_ . _ log2)
YT e

The remaining saddlepoint equation df/0v, determining 8,

exp [_%(9 - 5)2] —exp [_%(9 + 5)2] _ Vomlog(2) (40)

RQ

does not have a closed form solution. However, for 8« > 0 an approximate solution
can be found

~ K+ V2 [log (ﬁg@))] " (41)

Whereas the analytical equations for y and ¢, and the solution of #, obtained by solving
Eq. (40) numerically, fit the numerical solutions of the full saddle point equations very
well even for moderate values of 2 < # < 6, the closed form solution for # (41) is only
a good approximation for £ > 1 in this region.

3.3.  Pattern stability distribution (PSD)

The phase transition in order parameter space is driven by the increase of the error
rate € for increasing example load «. It i1s therefore natural to examine the change in

t For 6 < 0, one has to replace ¢ by || in all the equations.
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Figure 5. (a) The PSDs p(A) of the Ising perceptron is shown as a function of
the pattern stability A for x = 0.1 for an example load «(6 = 0.5) = 59.492 close to
the phase transition point [op (k = 0.1) = 53.021]. The 6g-solution predicts the same
PSD p* for both ¢ = 41 and o = —1 patterns. For the ¢-solution this symmetry
is broken. (b) The difference in the total PSD (Ap = pt +p~ — Qpi) as a function
of A for various values of o «(0.1) = 53.266, «(0.2) = 54.008, and «(0.3) = 55.266.
The asymmetry of Ap(A) caused by the discontinuity at the decision boundary leads
to the reduction in the error rate of the #-solution.

the pattern stability distribution (PSD) of the perceptron around the critical load «.
We first examine the PSD of the Ising perceptron as it has a simpler structure (it
lacks the gap and the é-contribution of the spherical case).

In Figure ba, PSDs of the Ising perceptron for patterns with targets ¢ = 41
and ¢ = —1 are plotted for both the #, and @-solution for stability x = 0.1. The
example load o was chosen slightly larger than o and determined as a function
of the value of threshold @, e.g., in Figure 5 «(6 = 0.5) = 59.492 [for comparison
ap(k = 0.1) = 53.021]. The ¢ = =l-pattern stability distributions p* of the 0,-
solution are identical. For the f-solution this symmetry is broken and the PSDs pT
and p~ are distorted around the former. For § > 0 the probability in the unstabilised
region A < k has increased for ¢ = +1-patterns whereas it has reduced for ¢ = —1-
patterns, and vice versa for the stabilised region A > «.

All three distributions exhibit a discontinuity at the threshold stability « which 1s
formally due to the exponentional factor e™" in Eq. (37). Although the functional form
of the PSDs (36) is quite complicated, the PSDs have almost conserved the Gaussian
form of the numerator. The means are shifted and dependent on ¢6.

To assess the change in total error, it is more accurate to study the difference of
the total PSD [Ap= (pt +p~) — 2p*]. In Figure 5b, Ap is shown for three values
of « even closer to the critical point. One can see that the shift of the means of the
6-PSDs removes probability mass from the region close to the decision threshold «.
Furthermore Ap(A) is almost symmetric around «. If this symmetry were perfect, the
total error rate could not be different for the 8, and @-solution. However, we find a
distortion in the region A & «, which can be most easily depicted by the discontinuity
at x, which grows for increasing «(6).

We find quite similar results in the case of the spherical perceptron although due
to the gap and the é-contribution in the PSD lead to a more complex behaviour. To
make the effect of these extra features more obvious, we have chosen a larger threshold
stability k = 1 for the spherical case. In Figure 6a, the one-step RSB PSDs of patterns
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(a) The PSDs p(A) of the spherical perceptron as a function of the
pattern stability A for k = 1 for an example load o(6 = 0.5) = 2.0901 close to the
phase transition point [ap(x = 1) = 1.8706]. Again the fy-solution predicts the
same PSD p¥T for both ¢ = +1 patterns, whereas this symmetry is broken for the
#-solution. The §-peak is indicated by the arrows and its probability mass is given by
PF = 952511072, P} = 9.1652:1072, and P;” = 1.0563:10~1. (b) The difference
in the total PSD (Ap = pt +p~ — Qpi) as a function of A for various values of
ot @(0.1) = 1.8790 [AP; = 2.3490107%], «(0.2) = 1.9076 [AP; = 1.1915-107%],
and «(0.3) = 1.9469 [APs = 2.6226-107%]. The reduction in the error rate of the
#-solution seems to be mainly caused by the increase of the gap.

Figure 6.

with targets ¢ = 41 and ¢ = —1 is shown for both solutions and an example load
of a(6 =0.5) = 2.0901 [for comparison ap(x = 1) = 1.8706]. Again we find that the
o = +1-PSDs of the #-solution are distorted around the PSD of the #,-solution.

The distributions have three components. For A < &, the distribution looks similar
to a Gaussian hump with means which vary with the value of —#. This regime
is seperated by a visible gap to the stabilized patterns, with a gap width which is
widened for the #-solution. One further finds that the contribution of the é-functions
at A = k has increased for the #-solution. The main probability mass of the stabilized
patterns is found in the Gaussian-like tail for A > .

To study the differences of the PSDs, we further show Ap(A) for three values of «
closer to ap, in Figure 6b. We find less symmetry in Ap than for the Ising perceptron,
but again total probability mass has been removed from the vicinity of A = k. The
main reduction in the error rate in this case seems to come from the widening of the
gap. This difference in probability mass has been partly shifted to the é-contributions.
The increase of probability mass at the é-peaks and the decrease of probability mass
at the widened gap is however between a factor of 10 to 100 larger (and increasing for
« — o) than the reduction in the error rate for the « values studied in Figure 6b.

It is further interesting to study the limit o« — oo as the error rate of the #,-solution
approaches its asymptotic value, which is larger than the asymptotic error rate of the
@-solution of 1/2 as was shown in both Figures 1 and 3. The @-solutions in the limit
of infinite example load has been shown to be characterized by a threshold increasing
to infinity and the portion of wrongly on errors decreasing rapidly to zero (see e.g.,
Figures 1 and 2).

To study this limit more closely, we show the PSDs of the spherical perceptron
in the one-step RSB ansatz for x = 1 and increasing « separately for the 6, and
@-solutions in Figure 7. For the f,-solution (which is equivalent to the perceptron
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Figure 7. The PSDs p(A) of the spherical perceptron as a function of the pattern
stability A for x = 1 and increasing example load «. (a) The PSD of the §o-
solution and «a(f = 0) = op = 1.8706 [Péi = 1.10291071], «(1) = 2.8878
[PE = 6.1194107%], (2) = 10.800 [PF = 1.10171072], «(3) = 85.059 [P =
9.2650-107%], «(4) = 1385.9 [PE = 5.1225107°], and o(0 = 6) = 6.2488.10°
[Péi = 3.4349:107%]. The total PSD of both ¢ = Z1-patterns approaches the
zero mean unit variance Gaussian distribution. (b) Both PSDs of the 6#-solution
for a range of o values [see above and a(f = 1.5) = 4.0890]. The §é-contributions
to the ¢ = £1-PSDs for § > 0 are given by (in order of increasing threshold):
[P} = 6.06821072; P, = 8.05951072], [P, = 3.20871072; P, = 4.91471072],
[P = 1.35891072; P = 2.40651072], [P = 1.1555107%; P = 2.7075.10°].
Both PSDs approach half of the probability mass of a unit variance Gaussian
distribution centered at o6.

without threshold), both PSDs approach half the probability mass of a Gaussian
distribution with zero mean and unit variance. This is as expected, since the examples
are uniformly distributed spatially and a random weight vector on the hypersphere has
an average overlap (activation) with the examples which is Gaussian distributed. As
all examples with absolute activation smaller than x are always counted as erroneous,
the error rate approaches € = 1 — H(k) > 1/2 in the o — oo limit.}

For the -solution on the other hand, both PSDs also approach (half the probability
masses of) unit variance Gaussian distributions but with means centered around of.
Although any weight vector will have a Gaussian distributed overlap, the activation is
shifted due to large threshold. This means that for infinite «, the #-solution classifies
the examples deterministically as either all +1 or —1 depending on the sign of the
(infinite) threshold, resulting in an total error rate of 1/2 irrespective of the stability
K.

One can assess the convergence rate of the the error rate of the percpetron against
the asymptotic error rate ¢ from the numerical solutions of the saddlepoint equations.
For the 6,-solution, we find within the RS ansatz (independent of the weight prior),
and within the one-step RSB ansatz for spherical and Ising perceptron respectively

oo —0.500+1

00 —0.3333+1 00 —0.490+£5
- — €psp X @ )

€ €ps X @ ,  €F —€pop X @ and e

bl

where the error indicates the uncertainty in the last significant digit only. The different
exponent in the powerlaw for Ising and spherical perceptron in the one-step RSB

t This means that any random weight vector on the hypersphere has the same error for o = co. In
the case of x = 0 this corresponds to random guessing of the output with 50% chance of success.
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ansatz is due to a logarithmic correction in the spherical case, as can be confirmed
by using the results for the expansions of the saddlepoint equations (39) to calculate
the asymptotic error of the spherical percepetron in the RS and similarly the one-step
RSB ansatz

2 / 2
- 1] 12e=* - e * /4 [loga]t/4
=g l — ] and €™ — € = T e (42)
For the #-solution we find similarly for the total error rate
1 6 o o 1:0002£2 1 6 o qml0AEd g 1 ‘ o 1044
2 RS ) 2 RSB ’ 2 IRSB )

for the three cases respectively. For the #-solution it was again difficult to measure
the powers in the one-step RSB cases very accurately due to possible logarithmic
corrections.  This is supported by comparing the numerical predictions to our
analytical results for the Ising perceptron, where we find to leading order

1 log(2) 1

— ¢ - —
9 IRSB 250, a’

(43)

where @y is the solution for the threshold from Eq. (40) or its approximation (41),
which gives a logarithmic correction to the power-law with exponent 1.

Comparing the predictions of the power-law decay of the error rate between 6,-
and @-solution, one notes two important differences: First, the exponent of the decay
is twice as large for the 8-solution, where the error decays linearly with «, and a slower
convergence for the 6,-solution with \/«. Second, the correction of the §-solution going
from RS to one-step RSB is only minor, a logarithmic term, whereas it is substantial
for the #,-solution, a change in the exponent from 1/3 to 1/2. This suggests that the
effect of RSB for large « is more severe for the perceptron without threshold than
with threshold. It also may indicate that the effect of further RSB breaking should
be less pronounced for the # than for the #,-solution.

3.4. The stability dependence of the phase transition

In this section we will examine the dependence of the phase transition point in order
parameter solution space on the threshold stability «. In Figure 8, o is plotted versus
% on a log-log scale for both spherical and Ising perceptron in the RS and one-step
RSB ansatze. The critical point « in solution space increases for decreasing stability
but exists for all non-zero stabilities, and exhibits a power-law dependence on k for
small stabilities with a, — o0 as & — 0. The numerical data predicts the exponents
of the power laws as

—3.000+1 RSB K_Z'O4i2

’ ap o IRSB K?_Z'OOOOil

RS
ap X K , and ap o ,

where the RS theory of the Ising perceptron only rescales the prefactor with the
constant 2/.

From Figure 8, we can further conclude that the phase transition exists for all finite
stabilities k > 0. The limits xk — 0 and o« — oo are therefore not interchangeable, i.e.,
the “point” {x = 0, = oo} is an unstable fixed point. Although, k = 0 would have
an error rate of 1/2 at « = oo irrespective of the threshold, only the f,-solution is
accessible to the perceptron for any finite « and it has no access to the #-solution for
o — 0.
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Figure 8. The critical normalised example number ap as a function the stability
% on a log-log scale shows a power law behaviour for small stability. The predicted
power law behaviour using one-step RSB is significantly different to the one predicted

from RS.

As the phase transition seems to be triggered by the increase of the error rate above
a critical value, we also show the error rate ¢, = €(ap) at the critical load, together
with its deviation from the asymptotic error rate 1/2 in Figure 9. One can see that the
stability has a dominant influence on the occurrence of the phase transition through
the error rate. For large stabilities the #,-solution becomes already unstable for small
error rates, with the limit ¢, — 0 for K — oco. The difference in the critical error rate
between the Ising and spherical perceptron is greatest for moderate stabilities & & 1,
which may be attributed to the gap and the é-contribution in the PSD of the spherical
perceptron.

The RS theory not only underestimates the error for a given load « and therefore
gives the incorrect power law for ap but also fails to predict the correct critical error
rate. RS fails especially for smaller stabilities, i.e.; large « as expected. This is
especially obvious by looking at the remnant error rate in Figure 9, which decays with
a power law. The exponents can be also evaluated from the numerical data:

1 1
pRS o Hl.OOO:I:l’ - EpRSB o H0'993i2
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1
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Although RS seems to give a reasonable power law decay of the error, the prefactor is

blatantly incorrect. An asymptotic expansion for small thresholds and stabilities for
the RS theory gives

V2 1
RS_§ m and . K (44)

9 k3 2 20/2m

Of more interest is the functional behaviour of the one-step RSB solution for small
stabilities, as the numerical solutions indicate a deviation from the pure power law

Qp
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Figure 9. The error rate €(ap) and its deviation from the asymptotic error rate 1/2
is shown a function of the stability £ on log-lin and log-log scales respectively. The
remnant error rate 1/2 — ¢ shows a power law decay for small x. For larger stabilities,
the phase transition occurs for increasingly small error rates.

behaviour in both the point of the phase transition as well as the asymptotic error. A
similar analytic expansion gives

RSB
) _

1
/log apRSB - ﬁ

for which a closed form solution does not exist. However, one can see that the deviation
from the pure k=2 power law behaviour of a, is due to the additional logarithmic term
in ap.

For the Ising perceptron it is not possible to expand all of the equations as the order
parameters y and ¢, have finite limits. However, the numerical solutions themselves
give us some insight. For the Ising perceptron there is no numerical indication that
the critical load «y, or its error ¢, deviate from pure power law behaviours in contrast
to the spherical case, which exhibit logarithmic corrections. Furthermore, for large
stabilities the phase transition occurs at a smaller error rate for the Ising than for the
spherical perceptron, whereas this characteristic is reversed for small stabilities, where
the phase transition occurs at a larger error rate. These differences between the two
weight priors could either be attributed to their respective weight space structures, or
it may indicate that one-step RSB is correct in the Ising and incorrect in the spherical
case.

(45)

3.5. Non-zero output bias mg

For non-zero output bias mg, the symmetry in the space of thresholds & is broken and
we find only solutions with 8 # 0 for all «, with > 0 for m, < 0 and vice versa. Due
to the symmetry of the solutions for my — —m, = # — —6, one can assume m, < 0
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Figure 10. (a) The evolution of the threshold § with the example load o is shown
for several small values of the bias (see legend) around the critical load ap with
constant stability x = 0.1. The phase transition is increasingly smeared out for
growing magnitude of the bias. (b) The evolution of §(«) over a wide range of o for
larger magnitudes of the bias m, shows the same effect. The left-hand starting point
of each curve depicts the capacity limit o increasing with growing magnitude of the
bias.

and 6 > 0 without loss of generality. Below, we will discuss only the Ising perceptron
as we found the behaviour for both binary and real weights to be quite generic.

In Figure 10 the threshold of the Ising perceptron is shown as a function of « for
various values of the output bias m, at fixed stability k = 0.1. In Figure 10a, one
sees that for very small magnitude of the bias, the evolution of the threshold closely
approaches the curve for zero bias. Similar behaviour can also be found for the other
order parameters. The largest deviations between the zero-bias solution and the finite
bias solution can always be found around the point of the phase transition at ap. In
this sense, the output bias m, can be seen as an external field which “smears” out the
phase transition.

In Figure 10b, we show the evolution of the the threshold @ for larger magnitudes
of the bias over a wider range of loads «. For large « the threshold tends to infinity,
whereas the left-hand starting point of each curve depicts the capacity limit ac
increasing with increasing magnitude of the bias.

For large «, one can expand the free energy of the Ising perceptron, similarly to
the zero-bias case. One finds that the leading order of 8f/dy gives ¢, = y? as for the
zero bias case. The leading order of 9f/86 implies

B 1 L+ |mo| ]| _ .
v = 2|64| |:K?—|— 306] log (1 — )] = 2|0s|x", (46)

|mo|

where 6, is the solution of the threshold for given load a and &* is a modified
effective stability, which depends on the bias and on the solution of the threshold
(i.e., ultimately on «). Further inserting 0f/0v in 0f/0q, yields
_ o log(2) 1
\/q_U_y_ /71_77102/{* \/&

The remaining saddlepoint equation df/0v to determine 6 is given by

(1t el [~5001 = 7] = (1= malyexp [~ 01+-07] = ZEEEE. )

(47)
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and cannot be solved for # in closed form. The approximation used in the zero-bias
case in Eqs. (40) and (41) [see Section 3.2], which neglects the less dominant term on
the left hand side of Eq. (48), still does not make a closed form solution feasible, due
to the O-dependence of *.

For the asymptotic error rate one finds ¢ = %(1 — |mo]|) irrespective of the
stability k — the intuitive result if one classifies the larger class of example correctly
and misclassifies the smaller example class by using a threshold of infinite absolute

value. The asymptotic error rate 1s approached via

oo _ log(2) 1

TS

(49)

As both 05 and k* are dependent on «, the asymptotic behaviour deviates from a pure
power law behaviour.

4. Summary and conclusions

In this paper we have investigated the threshold boolean perceptron above saturation
for both spherical and binary weight priors. Even for unbiased input and output
distributions, we find that the introduction of a threshold triggers interesting
phenomena for finite stabilities k > 0 which are not otherwise present. Namely, we
find a second order phase transition in order parameter space at a stability dependent
critical load ap(k), with spontaneous symmetry breaking in the space of thresholds 6.
This phase transition is driven by the error rate as we find that the perceptron without
threshold exhibits a higher asymptotic error [e*® = 1 — H ()] than the perceptron with
threshold [¢*® = 1/2].

Zero stability k = 0 constitutes a special case, as one does not find a phase
transition for finite «. This means that the limits K — 0 and a — oo are not
interchangeable and the “point” {x = 0, = co} is an unstable fixed point. One could
argue that this point is in fact a first order phase transition, leading to a discontinuous
jump in order parameter space.

We further have identified the bias of the output distribution m, with the external
magnetic field in spin systems that breaks the symmetry in #-space and “smears” out
the phase transition. Whereas a non-zero output bias has therefore a profound effect
on the performance of perceptrons, we find that a non-zero input bias can always be
absorbed by a rescaling of the target stability x. These results also suggest that one
should not remove the threshold in favour of a ferromagnetic bias in the couplings as
we have found that a threshold can always compensate for this bias but not vice versa.

In the asymptotic limit & — oo and finite stability £ > 0, we not only find unequal
values for the asymptotic error rate but strikingly different solutions in order parameter
space for the perceptron with and without threshold, especially, for the asymptotics
of the one-step RSB overlap ¢,: In the case of the spherical weight constraint, we find
that ¢, approaches 1 for the perceptron without threshold, whereas ¢, decays to 0 for
the perceptron with threshold. For the Ising perceptron we find a similar behaviour:
The solution with non-zero threshold is characterised by a vanishing overlap ¢, for
increasing « and the solution with zero threshold exhibits a finite limit of ¢, for
infinite load which is stability dependent and strictly smaller than 1.

It has been argued previously [5] that the above asymptotic behaviour for the
spherical perceptron without threshold indicates that one-step RSB cannot be exact
at high load. For a correct solution one would expect the smallest overlap scale ¢, to
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approach 0 for &« — oo as in this limit any weight vector should perform equally well.

Recently, it has been shown by performing a 2-step RSB calculation [18] that
one-step RSB is indeed inexact for the spherical perceptron without threshold.
Furthermore, it has been proved [18] that any model with a gap in the pattern stability
distribution (PSD) (such as the spherical perceptron with or without threshold and
Gardner-Derrida cost function) necessitates infinitely many RSB steps to yield the
exact result.

These findings give some support to the validity of the qualitative argument made
above. A strict application of this argument would imply that one-step RSB is also
inexact for the Ising constraint, which has been the source of some debate [6, 24, 25].
As the PSD of the Ising perceptron with the Gardner-Derrida cost function does not
exhibit a gap, the proof in [18] is not able to resolve this issue.

We have some doubts if one can have enough confidence in the qualitative argument
of [5] to argue that one-step RSB is incorrect in the Ising model. First, we believe
that one should be very careful to apply such an intuitive argument to models with
discrete weights. For example, whereas all overlaps in the spherical model converge
to 1 at the capacity limit, leaving just a single solution, the smallest overlap scale g,
remains finite but strictly smaller than 1 for the Ising model, which is initially not
really intuitive (see [6] for a plausible explanation), as it suggests several solutions
at the capacity limit. A similar effect may be present in the limit « — oco. Second,
one may argue, that the argument of [5] can demand ¢, = 0 strictly only at o = oo,
whereas it implicitly assumes a smooth transition of ¢, — 0 for & — oo, which does
not take into account the possibility of a discontinuous transition. We have arguably
found a possibility for such a discontinuous transition for the case kK = 0 at o = oo,
from the 6,-solution with ¢, = 1 to the f#-solution with ¢, = 0.

To resolve the issue of the exactness of one-step RSB in the Ising perceptron with
Gardner-Derrida cost function, it may be worthwhile to reexamine the 2-step RSB
solution in [6] numerically for large o and/or to calculate the stability of the one-step
RSB solution.

Nevertheless, results concerning the asymptotic behaviour of the error rate and
the order parameters in this paper suggest that the effect of further RSB breaking
may be even smaller for both the Ising and the spherical perceptron with threshold in
the regime of the #-solution than has been found for the f,-solution of the spherical
perceptron in [18]. The one-step RSB solution may therefore remain sufficiently
accurate for many practical purposes like calculating the capacity of multilayer
networks produced by constructive algorithms [10, 11], where a treatment with a
2-step RSB solution is computationally infeasible.
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