824 research outputs found

    Lunar orbital photogaphic planning charts for candidate Apollo J-missions

    Get PDF
    A technique is presented for minimizing Mapping Camera film usage by reducing redundant coverage while meeting the desired sidelap of greater than or equal to 55%. The technique uses the normal groundtrack separation determined as a function of the number of revolutions between the respective tracks, of the initial and final nodal azimuths (or orbital inclination), and of the lunar latitude. The technique is also applicable for planning Panoramic Camera photography such that photographic contiguity is attained but redundant coverage is minimized. Graphs are included for planning mapping camera (MC) and panoramic camera (PC) photographic passes for a specific mission (i.e., specific groundtracks) to Descartes (Apollo 16), for specific missions to potential Apollo 17 sites such as Alphonsus, Proclus, Gassendi, Davy, and Tycho, and for a potential Apollo orbit-only mission with a nodal azimuth of 85 deg. Graphs are also included for determining the maximum number of revolutions which can elapse between successive MC and PC passes, for greater than or equal 55% sidelap and rectified contiguity respectively, for nodal azimuths between 5 deg and 85 deg

    Strontium optical lattice clocks for practical realization of the metre and secondary representation of the second

    Full text link
    We present a system of two independent strontium optical lattice standards probed with a single shared ultra-narrow laser. The absolute frequency of the clocks can be verified by the use of Er:fiber optical frequency comb with the GPS-disciplined Rb frequency standard. We report hertz-level spectroscopy of the clock line and measurements of frequency stability of the two strontium optical lattice clocks.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Meas. Sci. Technol. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/0957-0233/26/7/07520

    Quantum Matching Pennies Game

    Full text link
    A quantum version of the Matching Pennies (MP) game is proposed that is played using an Einstein-Podolsky-Rosen-Bohm (EPR-Bohm) setting. We construct the quantum game without using the state vectors, while considering only the quantum mechanical joint probabilities relevant to the EPR-Bohm setting. We embed the classical game within the quantum game such that the classical MP game results when the quantum mechanical joint probabilities become factorizable. We report new Nash equilibria in the quantum MP game that emerge when the quantum mechanical joint probabilities maximally violate the Clauser-Horne-Shimony-Holt form of Bell's inequality.Comment: Revised in light of referees' comments, submitted to Journal of the Physical Society of Japan, 14 pages, 1 figur

    FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS

    Get PDF
    We present a nonhydrostatic finite-volume global atmospheric model formulation for numerical weather prediction with the Integrated Forecasting System (IFS) at ECMWF and compare it to the established operational spectral-transform formulation. The novel Finite-Volume Module of the IFS (henceforth IFS-FVM) integrates the fully compressible equations using semi-implicit time stepping and non-oscillatory forward-in-time (NFT) Eulerian advection, whereas the spectral-transform IFS solves the hydrostatic primitive equations (optionally the fully compressible equations) using a semi-implicit semi-Lagrangian scheme. The IFS-FVM complements the spectral-transform counterpart by means of the finite-volume discretization with a local low-volume communication footprint, fully conservative and monotone advective transport, all-scale deep-atmosphere fully compressible equations in a generalized height-based vertical coordinate, and flexible horizontal meshes. Nevertheless, both the finite-volume and spectral-transform formulations can share the same quasi-uniform horizontal grid with co-located arrangement of variables, geospherical longitude–latitude coordinates, and physics parameterizations, thereby facilitating their comparison, coexistence, and combination in the IFS. We highlight the advanced semi-implicit NFT finite-volume integration of the fully compressible equations of IFS-FVM considering comprehensive moist-precipitating dynamics with coupling to the IFS cloud parameterization by means of a generic interface. These developments – including a new horizontal–vertical split NFT MPDATA advective transport scheme, variable time stepping, effective preconditioning of the elliptic Helmholtz solver in the semi-implicit scheme, and a computationally efficient implementation of the median-dual finite-volume approach – provide a basis for the efficacy of IFS-FVM and its application in global numerical weather prediction. Here, numerical experiments focus on relevant dry and moist-precipitating baroclinic instability at various resolutions. We show that the presented semi-implicit NFT finite-volume integration scheme on co-located meshes of IFS-FVM can provide highly competitive solution quality and computational performance to the proven semi-implicit semi-Lagrangian integration scheme of the spectral-transform IFS.</p

    Critical Dimensions in Architectural Photography: Contributions to Architectural Knowledge

    Get PDF
    This paper illustrates and explores three critical dimensions of photography in architecture, each of which informs the production of images, texts, and other artifacts which establish what might be called a building’s media footprint. The paper’s broad goal is to question the extent to which these critical dimensions are relevant to architectural decision-making processes. Acknowledging that such dimensions as the ones examined here rarely predict an architect’s specific design decisions in a transparent manner, the paper discusses not only the decisions made by architects during the process of designing buildings, but the decisions made by critics, visitors, and members of the general public as they engage in activities such as visiting buildings, writing about them and, particularly, photographing them. First, the text discusses the potential of buildings to operate as mechanisms for producing images, in the sense originated by Beatriz Colomina. The question is developed through the analysis of the space of photography – mapping of points of view, directions of view, and fields of view of defined photographic collections. Secondly, it considers photography’s complicity in the canonization of buildings, and specifically, the extent to which photography is responsible for distinguishing between major and minor architectural works. Finally, the essay examines the erosion over time of photography’s historical power to frame when confronted with contemporary technologies of virtual reality and photo realistically rendered digital models. Each of these critical dimensions, or concepts, develops a specific aspect of how photographic information about buildings is organized, structured, and disseminated, and is thus only part of the larger project of architectural epistemology, which inquires into this wider field. This will be done through an examination of the Mies van der Rohe-designed Commons Building at ITT in Chicago and the evolution of its relationship with architectural photography and photographic representation – both on its own terms and through the prism of the Rem Koolhaas-designed McCormick Tribune Student Center, which adds to and incorporates the Commons Building. Until the end of the twentieth century, the Commons Building on the campus of the Illinois Institute of Technology was generally considered one of Mies van der Rohe’s lesser works. Reportedly neglected by its own architect during the design process, and frequently marginalized in academic discussions of the campus, when mentioned at all the building was often cited as an unrefined prototype of Crown Hall. This discourse took a new direction when in 1998, Rem Koolhaas/OMA won a design competition for a student center on the IIT campus: uniquely among the competition entries, Koolhaas’s design incorporated the Commons Building within a new context – what ultimately became the McCormick Tribune Campus Center (MTCC). When critics concluded that the incorporation of the Commons Building into the larger whole could compromise its integrity as an exemplar of Mies’s work, the building became the object of renewed interest and controversy. The two projects considered here show a clear evolution in architecture’s relationship with the photographic image. Specifically, the history of the Commons Building can be traced through photographs: during and shortly following its construction, the building was photographed as part of Mies’s own attention to publicity; it was documented as part of historical analyses; and over time it was visited and photographed by casual and amateur photographers. Following the competition results, photographs of the Commons Building were strategically deployed by both proponents and critics of Koolhaas’s design. Contemporary photographs of the building appear in architectural and campus guidebooks and on websites such as Flickr.com. Examining the ways in which photographs of the Commons Building appear in these various contexts allows discussion of the critical dimensions identified above and permits us to trace the evolution of the mutually reinforcing relationship between architecture and photography

    GRB 080319B: A Naked-Eye Stellar Blast from the Distant Universe

    Get PDF
    Long duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of a massive star. Over the last forty years, our understanding of the GRB phenomenon has progressed dramatically; nevertheless, fortuitous circumstances occasionally arise that provide access to a regime not yet probed. GRB 080319B presented such an opportunity, with extraordinarily bright prompt optical emission that peaked at a visual magnitude of 5.3, making it briefly visible with the naked eye. It was captured in exquisite detail by wide-field telescopes, imaging the burst location from before the time of the explosion. The combination of these unique optical data with simultaneous gamma-ray observations provides powerful diagnostics of the detailed physics of this explosion within seconds of its formation. Here we show that the prompt optical and gamma-ray emissions from this event likely arise from different spectral components within the same physical region located at a large distance from the source, implying an extremely relativistic outflow. The chromatic behaviour of the broadband afterglow is consistent with viewing the GRB down the very narrow inner core of a two-component jet that is expanding into a wind-like environment consistent with the massive star origin of long GRBs. These circumstances can explain the extreme properties of this GRB.Comment: 43 pages, 18 figures, 3 tables, submitted to Nature May 11, 200
    • …
    corecore