21 research outputs found

    Nuclear Photoabsorption at Photon Energies between 300 and 850 Mev

    Full text link
    We construct the formula for the photonuclear total absorption cross section using the projection method and the unitarity relation. Our treatment is very effective when interference effects in the absorption processes on a nucleon are strong. The disappearance of the peak around the position of the D13D_{13} resonance in the nuclear photoabsorption can be explained with the cooperative effect of the interference in two-pion production processes,the Fermi motion, the collision broadenings of Δ\Delta and N∗N^*, and the pion distortion in the nuclear medium. The change of the interference effect by the medium plays an important role.Comment: 22pages,7figures,revtex

    Evaluation of the polarization observables I^S and I^C in the reaction gamma p --> pi^0 eta p

    Full text link
    We evaluate the polarization observables I^S and I^C for the reaction gamma p --> pi^0 eta p, using a chiral unitary framework developed earlier. The I^S and I^C observables have been recently measured for the first time by the CBELSA/TAPS collaboration. The theoretical predictions of I^S and I^C, given for altogether 18 angle dependent functions, are in good agreement with the measurements. Also, the asymmetry dSigma/dcos(theta) evaluated here agrees with the data. We show the importance of the Delta(1700)D33 resonance and its S-wave decay into eta Delta(1232). The result can be considered as a further confirmation of the dynamical nature of this resonance. At the highest energies, deviations of the predictions from the data start to become noticeable, which leaves room for additional processes and resonances such as a Delta(1940)D33. We also point out how to further improve the calculation.Comment: Version accepted for publication by the European Physical Journal A, 9 pages, 7 figure

    Multi-capillary column-ion mobility spectrometry (MCC-IMS) as a new method for the quantification of occupational exposure to sevoflurane in anaesthesia workplaces: an observational feasibility study

    Get PDF
    BACKGROUND: Occupational exposure to sevoflurane has the potential to cause health damage in hospital personnel. Workplace contamination with the substance mostly is assessed by using photoacoustic infrared spectrometry with detection limits of 10 ppbv. Multi-capillary column-ion mobility spectrometry (MCC-IMS) could be an alternative technology for the quantification of sevoflurane in the room air and could be even more accurate because of potentially lower detection limits. The aim of this study was to test the hypothesis that MCC-IMS is able to detect and monitor very low concentrations of sevoflurane (<10 ppbv) and to evaluate the exposure of hospital personnel to sevoflurane during paediatric anaesthesia and in the post anaesthesia care unit (PACU). METHODS: A MCC-IMS device was calibrated to several concentrations of sevoflurane and limits of detection (LOD) and quantification (LOQ) were calculated. Sevoflurane exposure of hospital personnel was measured at two anaesthesia workplaces and time-weighted average (TWA) values were calculated. RESULTS: The LOD was 0.0068 ppbv and the LOQ was 0.0189 ppbv. During paediatric anaesthesia the mean sevoflurane concentration was 46.9 ppbv (8.0 - 314.7 ppbv) with TWA values between 5.8 and 45.7 ppbv. In the PACU the mean sevoflurane concentration was 27.9 ppbv (8.0 – 170.2 ppbv) and TWA values reached from 8.3 to 45.1 ppbv. CONCLUSIONS: MCC-IMS shows a significantly lower LOD and LOQ than comparable methods. It is a reliable technology for monitoring sevoflurane concentrations at anaesthesia workplaces and has a particular strength in quantifying low-level contaminations of sevoflurane. The exposure of the personnel working in these areas did not exceed recommended limits and therefore adverse health effects are unlikely

    Temporal changes in the epidemiology, management, and outcome from acute respiratory distress syndrome in European intensive care units: a comparison of two large cohorts

    Get PDF
    Background: Mortality rates for patients with ARDS remain high. We assessed temporal changes in the epidemiology and management of ARDS patients requiring invasive mechanical ventilation in European ICUs. We also investigated the association between ventilatory settings and outcome in these patients. Methods: This was a post hoc analysis of two cohorts of adult ICU patients admitted between May 1–15, 2002 (SOAP study, n = 3147), and May 8–18, 2012 (ICON audit, n = 4601 admitted to ICUs in the same 24 countries as the SOAP study). ARDS was defined retrospectively using the Berlin definitions. Values of tidal volume, PEEP, plateau pressure, and FiO2 corresponding to the most abnormal value of arterial PO2 were recorded prospectively every 24&nbsp;h. In both studies, patients were followed for outcome until death, hospital discharge or for 60&nbsp;days. Results: The frequency of ARDS requiring mechanical ventilation during the ICU stay was similar in SOAP and ICON (327[10.4%] vs. 494[10.7%], p = 0.793). The diagnosis of ARDS was established at a median of 3 (IQ: 1–7) days after admission in SOAP and 2 (1–6) days in ICON. Within 24&nbsp;h of diagnosis, ARDS was mild in 244 (29.7%), moderate in 388 (47.3%), and severe in 189 (23.0%) patients. In patients with ARDS, tidal volumes were lower in the later (ICON) than in the earlier (SOAP) cohort. Plateau and driving pressures were also lower in ICON than in SOAP. ICU (134[41.1%] vs 179[36.9%]) and hospital (151[46.2%] vs 212[44.4%]) mortality rates in patients with ARDS were similar in SOAP and ICON. High plateau pressure (&gt; 29 cmH2O) and driving pressure (&gt; 14 cmH2O) on the first day of mechanical ventilation but not tidal volume (&gt; 8&nbsp;ml/kg predicted body weight [PBW]) were independently associated with a higher risk of in-hospital death. Conclusion: The frequency of and outcome from ARDS remained relatively stable between 2002 and 2012. Plateau pressure &gt; 29 cmH2O and driving pressure &gt; 14 cmH2O on the first day of mechanical ventilation but not tidal volume &gt; 8&nbsp;ml/kg PBW were independently associated with a higher risk of death. These data highlight the continued burden of ARDS and provide hypothesis-generating data for the design of future studies

    Visual short-term memory for global motion revealed by directional and speed-tuned masking

    No full text
    Neurobehavioral research with non-human primates has shown that different attributes of motion stimuli, such as direction and speed can be stored in visual short-term memory (VSTM) with a high degree of accuracy. We examined VSTM for global motion with a memory masking paradigm to determine which stimulus attributes are important in the storage process. We presented in two visual quadrants global motion random dot kinematograms (RDKs), whereas in the two remaining visual quadrants we presented random-motion RDKs. This pattern of stimulation was displayed in two distinct temporal intervals, i.e., sample and test stimuli (duration: 200 ms), separated in time by a 3.2-s delay period. During the delay period a random- or directional-motion mask was presented briefly (200 ms) either at the beginning, in the middle or at the end of the delay period. The results showed that the mask mainly interferes with performance when displayed 200 ms after the offset of the sample and when it had a coherent direction rather than random directions. Moreover, the mask is significantly more effective when its direction and speed matched that of the remembered sample. These results support the notion that the memory representation of global motion is selective for direction and speed, being compromised by intervening directional stimuli presented immediately after the encoding phase. Moreover, this selectivity suggests that the same neural mechanisms involved in the processing of global motion may be recruited for its storage

    Direct observation of a rho decay of the D-13(1520) baryon resonance

    Get PDF
    The reaction gammap → pi (+)pi (o)n has been measured at MAMI for photon energies up to 820 MeV. Invariant mass spectra of the particles in the final state (pi (+)n), (pi (o)n), (pi (+)pi (o)) have been determined for several bins of incident photon energy. Differences in pi (+)pi (o) and simultaneously measured pi (o)pi (o) invariant mass distributions are assigned to a rho branch of the D-13(1520) nucleon resonance

    Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice

    No full text
    The prevalence of inflammatory diseases is increasing in modern urban societies. Inflammation increases risk of stress-related pathology; consequently, immunoregulatory or antiinflammatory approaches may protect against negative stress-related outcomes. We show that stress disrupts the homeostatic relationship between the microbiota and the host, resulting in exaggerated inflammation. Repeated immunization with a heat-killed preparation of Mycobacterium vaccae, an immunoregulatory environmental microorganism, reduced subordinate, flight, and avoiding behavioral responses to a dominant aggressor in a murine model of chronic psychosocial stress when tested 1-2wk following the final immunization. Furthermore, immunization with M. vaccae prevented stress-induced spontaneous colitis and, in stressed mice, induced anxiolytic or fear-reducing effects as measured on the elevated plus-maze, despite stress-induced gut microbiota changes characteristic of gut infection and colitis. Immunization with M. vaccae also prevented stress-induced aggravation of colitis in a model of inflammatory bowel disease. Depletion of regulatory T cells negated protective effects of immunization with M. vaccae on stress-induced colitis and anxiety-like or fear behaviors. These data provide a framework for developing microbiome- and immunoregulation-based strategies for prevention of stress-related pathologies
    corecore