140 research outputs found

    Photocatalytic Formic Acid Conversion on CdS Nanocrystals with Controllable Selectivity for H2 or CO.

    Get PDF
    Formic acid is considered a promising energy carrier and hydrogen storage material for a carbon-neutral economy. We present an inexpensive system for the selective room-temperature photocatalytic conversion of formic acid into either hydrogen or carbon monoxide. Under visible-light irradiation (λ>420 nm, 1 sun), suspensions of ligand-capped cadmium sulfide nanocrystals in formic acid/sodium formate release up to 116±14 mmol H2 g(cat)(-1) h(-1) with >99% selectivity when combined with a cobalt co-catalyst; the quantum yield at λ=460 nm was 21.2±2.7%. In the absence of capping ligands, suspensions of the same photocatalyst in aqueous sodium formate generate up to 102±13 mmol CO g(cat)(-1) h(-1) with >95% selectivity and 19.7±2.7% quantum yield. H2 and CO production was sustained for more than one week with turnover numbers greater than 6×10(5) and 3×10(6), respectively.This work was supported by the Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development), the OMV Group, the EPSRC (EP/H00338X/2 to ER), the Isaac Newton Trust, the German Research Foundation (MFK), and the Advanced Institute for Materials Research-Cambridge Joint Research Centre (KLO). XPS spectra were obtained at the National EPSRC XPS User's Service (NEXUS) at Newcastle University, an EPSRC Mid-Range Facility.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/anie.20150623

    Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules

    Get PDF
    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17

    DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases

    Get PDF
    We performed a multi-ethnic Epigenome Wide Association study on 22,774 individuals to describe the DNA methylation signature of chronic low-grade inflammation as measured by C-Reactive protein (CRP). We find 1,511 independent differentially methylated loci associated with CRP. These CpG sites show correlation structures across chromosomes, and are primarily situated in euchromatin, depleted in CpG islands. These genomic loci are predominantly situated in transcription factor binding sites and genomic enhancer regions. Mendelian randomization analysis suggests altered CpG methylation is a consequence of increased blood CRP levels. Mediation analysis reveals obesity and smoking as important underlying driving factors for changed CpG methylation. Finally, we find that an activated CpG signature significantly increases the risk for cardiometabolic diseases and COPD

    Translational models for vascular cognitive impairment: a review including larger species.

    Get PDF
    BACKGROUND: Disease models are useful for prospective studies of pathology, identification of molecular and cellular mechanisms, pre-clinical testing of interventions, and validation of clinical biomarkers. Here, we review animal models relevant to vascular cognitive impairment (VCI). A synopsis of each model was initially presented by expert practitioners. Synopses were refined by the authors, and subsequently by the scientific committee of a recent conference (International Conference on Vascular Dementia 2015). Only peer-reviewed sources were cited. METHODS: We included models that mimic VCI-related brain lesions (white matter hypoperfusion injury, focal ischaemia, cerebral amyloid angiopathy) or reproduce VCI risk factors (old age, hypertension, hyperhomocysteinemia, high-salt/high-fat diet) or reproduce genetic causes of VCI (CADASIL-causing Notch3 mutations). CONCLUSIONS: We concluded that (1) translational models may reflect a VCI-relevant pathological process, while not fully replicating a human disease spectrum; (2) rodent models of VCI are limited by paucity of white matter; and (3) further translational models, and improved cognitive testing instruments, are required

    Diatreta Cups, Light in Roman Dining Spaces

    Get PDF
    Cage cups or Diatreta are ancient Roman glass vessels produced by creating a thick blown blank of glass that, once cooled down, is taken to a glass cutter or diatretarii. The latter would cut and carve away most of the glass leaving a transparent vessel inside and an open-work decoration separated through thin posts of glass. The work is very delicate and exclusive, produced within limited space in time with no record of similar vessels until the late 1800 (Donald B. Harden & Toynbee 1959, p.181). Many of these glass objects have good-will inscriptions or decorations that express the importance of drinking. As for their provenance, most –when found in context- have been found in pagan burials. Nevertheless some fragments have been found in Christian environments or with Christian motifs like the Szekszárd cup. The location of these finds is mostly in the Rhine area –northern Empire, when Milan was one of its capitals (Aquaro 2004)- but the actual extent of finds expand throughout the 4th century extent of the Roman Empire. Considering their typological analysis there are basically two types, beaker and bowl. Beakers are considered drinking vessels as they either display a legend or a mythological reference to drink or wine. Whereas a general consensus agrees that open bowl-form cups were hanging lamps (Whitehouse 1988, p.28) since the 1986 find of a diatreta bowl with copper alloy hanging attachments. It is clear these were luxury objects to be used in special occasions and spaces. The aim of this paper is to understand the space were socialisation and drinking took place and the importance of luxurious objects to adorn, display and use. The paper will also put forward the idea that the beaker shaped diatreta vessels, usually considered for drinking, could have been lamps that encouraged drinking and good will to the guests. This paper is structured to first consider an introduction to late luxury Roman glass and then analysing the typological shape of all, or most of the diatreta currently known; secondly, through assessment by the means of comparison, analyse the writings or decorations the vessels were endowed with. Thirdly, by describing and understanding the people and the space were these vessels would have been used, emphasise the beauty of illuminating such spaces with these vessels. According to Herodotus in his historical investigation –5th century-, dress habits and food regime are elements of extreme importance to understand a people (Caporusso et al. 2011, p.12). This idea is not only valid for Herodotus’ time but it is something anthropology uses time and again to explain different aspects in people’s way of life. Through food and its environment, the dining space, this paper will aim to put the cage cups into a social context in order to give emphasis to the hypothesis of light versus wine

    Carbon Dioxide Utilisation -The Formate Route

    Get PDF
    UIDB/50006/2020 CEEC-Individual 2017 Program Contract.The relentless rise of atmospheric CO2 is causing large and unpredictable impacts on the Earth climate, due to the CO2 significant greenhouse effect, besides being responsible for the ocean acidification, with consequent huge impacts in our daily lives and in all forms of life. To stop spiral of destruction, we must actively reduce the CO2 emissions and develop new and more efficient “CO2 sinks”. We should be focused on the opportunities provided by exploiting this novel and huge carbon feedstock to produce de novo fuels and added-value compounds. The conversion of CO2 into formate offers key advantages for carbon recycling, and formate dehydrogenase (FDH) enzymes are at the centre of intense research, due to the “green” advantages the bioconversion can offer, namely substrate and product selectivity and specificity, in reactions run at ambient temperature and pressure and neutral pH. In this chapter, we describe the remarkable recent progress towards efficient and selective FDH-catalysed CO2 reduction to formate. We focus on the enzymes, discussing their structure and mechanism of action. Selected promising studies and successful proof of concepts of FDH-dependent CO2 reduction to formate and beyond are discussed, to highlight the power of FDHs and the challenges this CO2 bioconversion still faces.publishersversionpublishe

    Analysis of arterial intimal hyperplasia: review and hypothesis

    Get PDF
    which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Despite a prodigious investment of funds, we cannot treat or prevent arteriosclerosis and restenosis, particularly its major pathology, arterial intimal hyperplasia. A cornerstone question lies behind all approaches to the disease: what causes the pathology? Hypothesis: I argue that the question itself is misplaced because it implies that intimal hyperplasia is a novel pathological phenomenon caused by new mechanisms. A simple inquiry into arterial morphology shows the opposite is true. The normal multi-layer cellular organization of the tunica intima is identical to that of diseased hyperplasia; it is the standard arterial system design in all placentals at least as large as rabbits, including humans. Formed initially as one-layer endothelium lining, this phenotype can either be maintained or differentiate into a normal multi-layer cellular lining, so striking in its resemblance to diseased hyperplasia that we have to name it "benign intimal hyperplasia". However, normal or "benign " intimal hyperplasia, although microscopically identical to pathology, is a controllable phenotype that rarely compromises blood supply. It is remarkable that each human heart has coronary arteries in which a single-layer endothelium differentiates earl
    corecore