238 research outputs found

    Employment Expectations and Gross Flows by Type of Work Contract

    Full text link
    There is growing interest in understanding firms’ temporary and permanent employment practices and how institutional changes shape them. Using data on Spanish establishments, we examine: (a) how employers adjust temporary and permanent job and worker flows to prior employment expectations, and (b) how the 1994 and 1997 labour reforms promoting permanent employment affected establishments’ employment practices. Generally, establishments’ prior employment expectations are realized through changes in all job and worker flows. However, establishments uniquely rely on temporary hires as a buffer to confront diminishing long-run employment expectations. None of the reforms significantly affected establishments’ net temporary or permanent employment flows.http://deepblue.lib.umich.edu/bitstream/2027.42/40032/3/wp646.pd

    Conformational effects on the Circular Dichroism of Human Carbonic Anhydrase II: a multilevel computational study

    Get PDF
    Circular Dichroism (CD) spectroscopy is a powerful method for investigating conformational changes in proteins and therefore has numerous applications in structural and molecular biology. Here a computational investigation of the CD spectrum of the Human Carbonic Anhydrase II (HCAII), with main focus on the near-UV CD spectra of the wild-type enzyme and it seven tryptophan mutant forms, is presented and compared to experimental studies. Multilevel computational methods (Molecular Dynamics, Semiempirical Quantum Mechanics, Time-Dependent Density Functional Theory) were applied in order to gain insight into the mechanisms of interaction between the aromatic chromophores within the protein environment and understand how the conformational flexibility of the protein influences these mechanisms. The analysis suggests that combining CD semi empirical calculations, crystal structures and molecular dynamics (MD) could help in achieving a better agreement between the computed and experimental protein spectra and provide some unique insight into the dynamic nature of the mechanisms of chromophore interactions

    On‐Demand Reconfiguration of Nanomaterials: When Electronics Meets Ionics

    Full text link
    Rapid advances in the semiconductor industry, driven largely by device scaling, are now approaching fundamental physical limits and face severe power, performance, and cost constraints. Multifunctional materials and devices may lead to a paradigm shift toward new, intelligent, and efficient computing systems, and are being extensively studied. Herein examines how, by controlling the internal ion distribution in a solid‐state film, a material’s chemical composition and physical properties can be reversibly reconfigured using an applied electric field, at room temperature and after device fabrication. Reconfigurability is observed in a wide range of materials, including commonly used dielectric films, and has led to the development of new device concepts such as resistive random‐access memory. Physical reconfigurability further allows memory and logic operations to be merged in the same device for efficient in‐memory computing and neuromorphic computing systems. By directly changing the chemical composition of the material, coupled electrical, optical, and magnetic effects can also be obtained. A survey of recent fundamental material and device studies that reveal the dynamic ionic processes is included, along with discussions on systematic modeling efforts, device and material challenges, and future research directions.By controlling the internal ion distribution in a solid‐state film, the material’s chemical composition and physical (i.e., electrical, optical, and magnetic) properties can be reversibly reconfigured, in situ, using an applied electric field. The reconfigurability is achieved in a wide range of materials, and can lead to the development of new memory, logic, and multifunctional devices and systems.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141225/1/adma201702770.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141225/2/adma201702770_am.pd

    Fast Field Cycling NMR relaxometry studies of molten and cooled cocoa butter

    Get PDF
    Due to its relevance in the confectionery industry, cocoa butter (CB) has been extensively studied. However, most studies focus on its crystallisation properties, whilst studies of its liquid state are lacking. Here, and for the first time, a study of the self-diffusion of CB at different temperatures is presented, using fast field cycling (FFC) nuclear magnetic resonance (NMR) further validated using pulsed field gradient stimulated echo (PGSTE) NMR. Measurements were performed upon heating CB to either 50 or 100 °C and cooling it to 22 °C. No hysteresis was found between the different thermal treatments. However, the activation energy (28.7 kJ/mol) estimated from the cooling protocol of the 100 °C treatment, was the closest to that reported in literature for similar systems. This suggests that measurements using a wider range of temperatures, and starting with a liquid material are advisable. Additionally, samples were measured during isothermal crystallisation at 22 °C, showing that the region below 1 MHz is the most sensitive to phase change

    Macrocyclic β-Sheet Peptides That Inhibit the Aggregation of a Tau-Protein-Derived Hexapeptide

    Get PDF
    This paper describes studies of a series of macrocyclic β-sheet peptides 1 that inhibit the aggregation of a tau-protein-derived peptide. The macrocyclic β-sheet peptides comprise a pentapeptide "upper" strand, two δ-linked ornithine turn units, and a "lower" strand comprising two additional residues and the β-sheet peptidomimetic template "Hao". The tau-derived peptide Ac-VQIVYK-NH(2) (AcPHF6) aggregates in solution through β-sheet interactions to form straight and twisted filaments similar to those formed by tau protein in Alzheimer's neurofibrillary tangles. Macrocycles 1 containing the pentapeptide VQIVY in the "upper" strand delay and suppress the onset of aggregation of the AcPHF6 peptide. Inhibition is particularly pronounced in macrocycles 1a, 1d, and 1f, in which the two residues in the "lower" strand provide a pattern of hydrophobicity and hydrophilicity that matches that of the pentapeptide "upper" strand. Inhibition varies strongly with the concentration of these macrocycles, suggesting that it is cooperative. Macrocycle 1b containing the pentapeptide QIVYK shows little inhibition, suggesting the possibility of a preferred direction of growth of AcPHF6 β-sheets. On the basis of these studies, a model is proposed in which the AcPHF6 amyloid grows as a layered pair of β-sheets and in which growth is blocked by a pair of macrocycles that cap the growing paired hydrogen-bonding edges. This model provides a provocative and appealing target for future inhibitor design

    New Insights of the Switching Process in GeAsTe Ovonic Threshold Switching (OTS) Selectors

    Get PDF
    Experimental evidence and analysis in this work provide new insights into the fast switching process in GeAsTe ovonic threshold switching (OTS) selectors. For the first time, the full switching-OFF process, covering the defect cluster shrinking and rupture stages, can be measured and characterized. Two distinct switch-OFF mechanisms and their dependence on the total impedance of the selector and resistor (1S1Rs) circuit are identified. The impact of series resistance value on the switching process, the 1S1Rs operation, and the underlying mechanisms can be explained by the dynamic resistance of OTS that is induced by the transition of defect clusters. This research sheds new light on OTS switching mechanism and its impact on 1S1Rs operation
    corecore