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Due to its relevance in the confectionery industry, cocoa butter (CB) has been 

extensively studied. However, most studies focus on its crystallisation properties, 

whilst studies of its liquid state are lacking. Here, and for the first time, a study of 

the self-diffusion of CB at different temperatures is presented, using fast field 

cycling (FFC) nuclear magnetic resonance (NMR) further validated using pulsed 

field gradient stimulated echo (PGSTE) NMR. Measurements were performed 

upon heating CB to either 50 or 100 °C and cooling it to 22 °C. No hysteresis 

was found between the different thermal treatments. However, the activation 

energy (28.7 kJ/mol) estimated from the cooling protocol of the 100 °C 

treatment, was the closest to that reported in literature for similar systems. This 

suggests that measurements using a wider range of temperatures, and starting 

with a liquid material are advisable. Additionally, samples were measured during 

isothermal crystallisation at 22 °C, showing that the region below 1 MHz is the 

most sensitive to phase changes. 

Keywords: cocoa butter, triacylglycerols, diffusion, FFC-NMR 

 

�
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Cocoa butter (CB) is one of the most important confectionery fats as it is responsible for 

the key sensory characteristics and stability of chocolate[1]. However, this is only 

possible when CB is present in a specific crystal form, namely the β-V phase[1-3]. 

Hence, most studies have focused on CB’s solid structure[4-12]. Nevertheless, the 

understanding of CB’s liquid phase is relevant, as it might hold information on what 

happens prior to crystallisation, such as the pre-nucleating structures proposed by 

previous authors for other fats[13-18]. In addition, information regarding the liquidity of 

the fatty acid (FA) chains in the triacylglycerols (TAGs) comprising the fat in the solid 

state is relevant to solid state phase transitions, such as from the β’-phase to the β-phase. 
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This is because a displacement and rearrangement of the TAG molecules is required for 

the generation of new lamellar and sub-cell structures, as well as the perfecting of the 

crystals[19-22].  

Studies in liquid fats have previously focused on X-ray or neutron scattering 

measurements[14, 15, 23]; however, self-diffusion studies of pure triacylglycerols 

(TAGs) have also been performed[24-27]. Only two of these studies determined self-

diffusion experimentally, whilst the other two are computer simulation predictions. 

Interestingly, the two experimentally-based studies use different methodologies, 

Callaghan et al.[24] used the standard pulse gradient stimulated echo sequence 

(PGSTE) [28, 29], and Rachocki and Tritt-Goc[27] used FFC-NMR. This technique, 

thanks to the advances in the area, has become more readily accessible, and has been 

used more frequently for the study of viscous liquids such as polyols and polymers[30-

33]. 

It is therefore evident that self-diffusion measurements are sparse in the studies 

of fats and oils. More specifically, to the best of our knowledge, no self-diffusion 

measurements in liquid CB have been reported up to date using either of the NMR 

techniques. Therefore, the main objective of this paper was to measure the self-diffusion 

of CB using both, PGSTE and FFC-NMR, making it the first study of its kind. 

Finally, whilst FFC-NMR has been mainly applied for the evaluation of liquid 

systems, it has also been observed useful in the studies of solid state matter, including 

crystal systems[34, 35]. Furthermore, NMR is a staple technique in the oil and fat 

industry for the determination of the solid fat content (SFC), allowing for the study of 

crystallisation kinetics[36, 37]. Thus, as secondary objective, the applicability of FFC-

NMR for crystallisation studies was evaluated. 
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Refined, bleached and deodorised West-African CB was used in all experiments 

without any further refinement. 

���������	

��	
���������������

Glass NMR tubes of 0.8 mm inner diameter were filled with approximately 2.5 cm of 

molten CB (50 °C), which was then left at ambient temperature for two weeks to allow 

for crystallisation prior to measurements. 
1
H NMRD profiles were obtained on a Stelar 

SMARtracer FFC NMR Relaxometer (Stelar s.r.l., Mede, PV, Italy). 

Samples were heated from 22 °C to 25, 27, 30, 35, 37 and 40 °C and 

subsequently to either 50 or 110 °C in 10 °C steps, allowing 10 min for thermal 

equilibration at each temperature. Samples were subsequently cooled to 22 °C, 

following a reversed protocol in cooling direction allowing for an equilibration time of 

15 min. Once 22 °C was reached, the samples were held isothermally for 120 min and 

measured continuously. Each full relaxation dispersion measurement took 

approximately 6 minutes, thus, the first measurement performed at 10 MHz corresponds 

to 1 min of isothermal time, whilst the first measurement made at 0.01 MHz 

corresponds to 6 min of isothermal time. 

The proton spins were submitted to a polarisation field of 7 MHz for a period of 

about five times the T1 estimated at this frequency. Afterwards, the magnetic field was 

switched to the corresponding relaxation field between 0.01–10.0 MHz. FIDs were 

recorded following a single 
1
H 90° pulse applied at 7 MHz. Field-switching time was 

2.5 ms, while the spectrometer dead time was 15 to 20 Ns. A recycle delay of 5 T1 was 

always used. A non-polarized FFC sequence was applied at relaxation fields of 10.0-

1.6 MHz, whilst a polarized FFC sequence was applied at fields below 1.6 MHz. 
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Diffusion coefficients were calculated from the obtained R1 values following the 

methodology proposed by Kruk, Meier and Rössler [38] 

����� ≅ ���0� − 	√� = ���0� − � 
���� ��
�ℏ�

�

√����� � 
���

�
� √�    ( 1 ) 

where B was estimated from the slope of the R1 vs frequency curve, � is the frequency, 

N the number of nuclei per cubic metre (in this case hydrogen), �� is the permeability of 

free space, �� is the gyromagnetic factor of hydrogen, ℏ is the reduced Planck’s 

constant, and D is the self-diffusion coefficient. Given that CB is primarily composed 

by a mix of TAGs, N was estimated from 

� = � /" ( 2 ) 

where ρ is the density, n is the average number of hydrogens per molecule and M the 

average molar mass, where both n and M were calculated as an average of the values of 

the three main TAGs in CB,  density was measured in a DMA 4500 vibrational density 

meter (Anton Paar, GmbH, Graz, Austria). 

Finally, all diffusion coefficients were plotted against temperature and fitted 

according to the linearized version of the Arrhenius equation[39] 

# $ = # $� − %&
'(   ( 3 ) 

where D0 is the pre-exponential factor (m
2
/s), which is independent of temperature, Ea is 

the activation energy, and R is the ideal gas constant. 

Data was also fitted to the Vogel-Fulcher-Tammann (VFT) equation 

# $ = # $� − )
�(*(��

 ( 4 )   

where D0 is the pre-exponential factor (m
2
/s), B is a material dependent parameter that 

Page 5 of 23

URL: http://mc.manuscriptcentral.com/tandf/tmph  Email: TMPH-peerreview@journals.tandf.co.uk

Molecular Physics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review
 O

nly

can be associated to the activation energy, and T0 is usually interpreted as the ideal glass 

transition or crystallisation temperature[40, 41]. 

�����������������������

For temperatures below 50 °C, 5 mm glass NMR tubes were filled with approximately 

1 cm of molten CB (50 °C) and left to crystallise for at least a week at ambient 

temperature. For treatments above 50 °C, a glass capillary of 2 mm inner diameter was 

filled with 0.5 cm of molten CB. This capillary was sealed and inserted in a 5 mm glass 

NMR tube. This set-up was necessary to reduce convection which causes an over-

estimation of the diffusion coefficient[42, 43]. 

Self-diffusion coefficients were measured on a Bruker Avance II 400 MHz with 

a diffusion probe (Diff50). The diffusion time, P, was 60 ms, and the pulse gradient 

duration, δ, was 4 ms for all measurements. Measurements were taken at 35, 37, 40, 50, 

60 and 70 °C. The samples were left to equilibrate for 10 min prior to measurements. 

Temperature was controlled with an accuracy of ±0.1 °C. 

The signal attenuation as a function of gradient was fitted using the Stejskal-Tanner 

equation[44-47], 

+, = +�-*�.
�,�/��0*1

��  ( 7 ) 

where Sg represents the signal as affected by diffusion, S0 the initial signal, D the 

diffusion coefficient, and γ the gyromagnetic ratio of hydrogen. Diffusion coefficients 

were determined from the signal intensity measured as the area of the strongest peak in 

the spectrum, i.e. the one corresponding to the CH2 groups within the FA chain. 
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In the last decade, the use of FFC-NMR for the determination of self-diffusion has 

increased[30-32, 48]. Nevertheless, PGSTE-NMR remains the standard technique for 

this purpose[29, 49]. Therefore, the diffusion coefficients determined by FFC-NMR 

were validated using the latter, as shown in Figure 1. 

From the previous figure, it is possible to see that the diffusion coefficients 

obtained by both methodologies are in good agreement with each other, as well as those 

taken from literature[24], and so are in agreement with the findings of Rachocki and 

Tritt-Goc[27]. In addition, it is noted that FFC-NMR has two main advantages over the 

PGSTE sequence. Firstly, no special set-up (small capillary inside the NMR tube) was 

required for measurements above 50 °C to avoid errors coming from convection effects. 

Secondly, temperatures of up to 100 °C were possible, whereas only temperatures of 

70 °C were achievable with the current Bruker set-up. Hence making FFC-NMR an 

ideal method for diffusion measurements not only of vegetable oils, as shown by 

Rachocki and Tritt-Goc[27], but also of vegetable fats, like CB, which have a higher 

melting point. 

Once the validity of the FFC-NMR measurements was ascertained, it was 

possible to evaluate the temperature dependence of self-diffusion, and the effect of the 

different maximum temperatures. 

�����������������������

��	

��	
��

��
�
���������

Comparing the different treatments, it is possible to observe that there was no hysteresis 

between the cooling and heating protocols (Figure 2A and B), nor between the two 
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maximum temperature treatments, 50 or 110 °C (Figure 3). This lack of hysteresis 

indicates that whilst changes in microviscosity of TAG systems have been reported by 

previous authors[50], they are not observable by bulk self-diffusion measurements, 

suggesting they only occur in localised areas, probably near the ends of the FA side 

chains or in in the areas surrounding newly formed nuclei. It is noted, however, that 

there is a difference in the diffusion coefficients measured at 70 °C (Figure 2B). It is 

tempting to associate this behaviour with a phase transition as it coincides with the 

melting point of tristearin[51-53], which is one of the minor components in CB.  

Regardless, given that at lower temperatures the diffusion coefficients do not deviate 

from those of the heating protocol, it is likely that this point is only an outlier. 

As mentioned earlier, two different functions were fitted to the diffusion 

coefficients, namely, the linearized Arrhenius equation (Figure 3) and the VFT model. 

From Figure 4 it can be observed that the best fit is obtained by the latter. This lack of 

linear trend is in agreement with the work from Greiner et al.[26], where the 

temperature dependence of self-diffusion of fully saturated TAGs was simulated, but 

contrasts with the linearity reported by Callaghan and Jolley[24]. However, it is 

important to note that this could not be confirmed from the published plot, as the scale 

used in both axes is variable, being neither linear nor logarithmic.  

Even though the temperature dependence was better described by the VFT 

function, from the Arrhenius fittings the Ea and D0 could still be obtained (Table 1). 

Here, it is evident that the D0s estimated from the 50 °C treatments are two to three 

orders of magnitude larger than those reported in literature[24], whilst the 100 °C 

treatments led to comparable values. This is easily explainable by the diffusion 

coefficient having a change (decrease) of slope after reaching 60-70 °C (Figure 4). Thus 

indicating that, by using 50 °C as maximum temperature, it is not possible to obtain a 
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full description of the temperature dependence, and that structural changes still occur 

above this temperature. This is likely due to the presence of crystalline material up to at 

least 70 °C because of the higher melting components of CB such as tripalmitin and 

tristearin[12, 54, 55]. Moreover, the D0 calculated from the heating ramps is one degree 

of magnitude smaller than that estimated from the cooling ramps, whereas the Ea is 

larger, regardless of the maximum temperature. This is explained by the Arrhenius 

function not being able to predict the sharper slope describing the diffusion coefficients 

at lower temperatures (< 35 °C). 

Table 1 Parameters of the VFT and Arrhenius equations fitted to the four different 

thermal treatments. 

�����	����������� �����
��

 !"!#�$
�


����
��

!#"%%�$
�

�����
��

 !"&##�$
�


����
���

&##"%%�$
�

������[24]� '''[24]�

D0 (10-10 m2s-1) 

     (VFT) 

7.0±0.6 6.5±0.7 3.6±0.9   5.9±0.5 --- --- 

B (A.U.) 294.91±7.3 289.98±7.5 200.132±8.5 299.61±7.1 --- --- 

T0 (°C) -38.2±7.6 -39.0±2.9 -25.5±1.0 -31.80±1.9 --- --- 

D0 (10
-6

 m
2
s

-1
) 

     (Arrhenius) 

31.8±0.02 200.0±5.4 0.30±0.01 1.04±0.02 0.47±0.09 0.93±0.07 

Ea (kJ/mol) 35.6±0.7 43.3±0.9 25.4±0.5 28.7±0.6 27.0±0.1 28.1±0.5 

Furthermore, the estimated D0 and Ea are closer to those reported for triolein[24] 

(Table 1). This is thought to be caused by the presence of an oleoyl chain in most of the 

TAGs present in CB. This oleoyl chain is known to decrease the melting temperature 

considerably (73 °C of tristearin[56] vs. 44 °C of StOSt[57]), and consequently, the 

energy required for any structural changes. This effect has been related to the oleoyl 

chain having an increased rotational freedom at the double bond, combined with 

increased entropy due to the steric hindrance between the bent oleoyl chain and the 

straight methyl chain of the saturated FAs[58, 59]. This is in contrast with the diffusion 

coefficient at 70 °C being closer to the value of tristearin (Figure 1). Nevertheless, it 

must be taken into consideration that whilst the oleoyl chains might be the drivers for 

the start of diffusion at lower temperatures, at 70 °C it is the saturated FAs that are 
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expected to govern the changes in diffusion, particularly when forming part of the fully 

saturated TAG molecules. This is related, once more, to their having melting points 

above 60 °C[56, 60]. 

Regarding the VFT derived parameters, it is evident that the estimated D0s are 

considerably lower than those determined from the Arrhenius fittings (Table 1). This is 

unsurprising as the Arrhenius function does not take into consideration the decreased 

slope at higher temperatures, thus overestimating the values of D0. Regardless, the D0s 

from the 100 °C treatment showed a similar trend to that of the Arrhenius fitting, the 

values estimated from the heating ramp were smaller compared to those estimated from 

the VFT. Contrastingly, no difference was observable between any of the parameters 

derived from the heating and cooling ramps of the 50 °C treatment. Given that the VFT 

curve does describe the changes in slope, it can predict the increase of slope at 

temperatures below 35 °C. In contrast, in the 100 °C treatment, when these values are 

lacking, the smaller slope observed from 60 °C onwards skews the fit towards higher 

diffusion factors. Thus reinforcing the need of applying the right function and of using a 

wide range of temperatures. 

From the VFT fittings, an additional parameter was obtained, the T0, which is 

commonly associated with glass or crystallisation transitions[39]. Surprisingly, even 

though CB is usually observed to crystallise at temperatures above 10 °C[61], all 

estimated T0s were below zero degrees (-40 to -25 °C). Nevertheless, a metastable form 

has been previously reported when cooling CB to temperatures between -30 and 5 °C 

[4, 5, 61].  Thus, these T0s could be related to the crystallisation of this specific crystal 

form, although a glass transition cannot be disregarded at this stage. Further studies are 

required to determine the origin of such very low temperature values. 
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FFC-NMR relaxometry measurements were continued for two hours after reaching 

22 °C to evaluate the feasibility of using this methodology not only for the study of CB 

in the liquid phase, but also during the crystallisation process. These studies were 

prompted by the FID T1 measurements commonly used for the determination of the 

percentage of solids in crystallising fat[36], and previous reports on the applicability of 

FFC-NMR measurements for the study of crystalline materials[34, 35]. 

From Figure 5, it is possible to see that the R1 values in the region between 0.01 

and 0.63 MHz increase over time, particularly in the 50 °C treatment. This increase in 

R1 is expected upon solidification of the material, thus confirming that FFC-NMR is 

sensitive to the progression of CB crystallisation. Based on the previous, it is possible to 

assume that by heating CB to 100 °C crystallisation is reduced, as the R1 only reached 

values of approximately 40 s
-1

, whereas in the 50 °C treatment, values above 100 s
-1

 

were observed at 0.01 MHz after two hours. This could be related to the 50 °C treatment 

retaining a small amount of crystal clusters from the higher melting TAG species 

present in CB, which then serve as heterogeneous nuclei[10, 52, 62]. Contrastingly, at 

100 °C, these small crystalline structures are expected to have become fully molten, 

thus delaying crystallisation. 

It is noted that, whilst FFC-NMR has the potential of being used for 

crystallisation measurements, it is not thought to be a substitute for the current SFC 

technique[37, 63], simply because of measuring times. As mentioned earlier, a single 

FFC-NMR measurement takes approximately 6 min, whereas an SFC measurement 

takes less than a minute. This makes the latter ideal for tracking the initial stages of 

crystallisation, especially in cases where crystallisation occurs within the first 30 min of 

the isothermal period, as in the case of the 50 °C treatment. Regardless, in-depth 
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analysis of the FFC-NMR dispersion curves, by covering a range of frequencies, has the 

potential of providing information on different types of molecular motion, as well as the 

degree of ordering that occur over time, i.e. information both on the remaining liquid 

and the solid forming, similarly to what has been applied for the studies of liquid 

crystals[64-66]. 

Finally, it is interesting to note that the spectral density above 1 MHz contains 

little information about the crystallisation and dynamics in these systems, highlighting 

the importance of exploring a range of frequencies, and showing that the lower range 

(below 1 MHz) is more sensitive to these systems, thus providing complementary 

information to that obtained at the 20 MHz used for SFC. 


�
������
��

Self-diffusion measurements of CB are presented, for the first time, using two 

methodologies, the standard PGSTE method and FFC-NMR. This comparison validates 

the latter as a good alternative method for diffusion measurements. Moreover, FFC-

NMR measurements have proved to be better suited for the studies of fats, as no special 

set-up was required to prevent convection errors, as was the case for the standard 

PGSTE-NMR measurements, and provided more ready access to a wider temperature 

range. 

Additionally, whilst no hysteresis was observed in the diffusion coefficients 

obtained from any of the four different treatments, different fitting parameters were 

obtained. Interestingly, the D0 and Ea estimated from the cooling curve of the 100 °C 

treatment were closer to the ones reported in literature, particularly those of triolein, 

whilst the diffusion coefficient at 70 °C is closer to that of tristearin. This highlights the 

importance of using a wide range of temperatures as well as the relevance of starting 

with a fully molten material. More importantly, though, it evidences oleoyl chains 
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driving the start of diffusion because of their higher mobility, and thus the activation 

energy, in systems composed of mixed TAGs (with unsaturated and saturated FAs). 

Nonetheless, as temperature increases, it is the saturated FAs which are expected to 

have a stronger influence. Further studies are suggested, using 
13

C NMR, to confirm this 

hypothesis. 

Regarding the isothermal measurements, it is concluded that FFC-NMR is suited 

to following crystallisation in fats, even if not in a time resolved fashion. Importantly, 

the most sensitive region to structural changes upon solidification was that below 

1 MHz. Hence, further analysis of the dispersion curves is recommended to determine 

the contribution of different molecular motions and evaluate the changes through time. 

This could provide insights into the initial stages of crystallisation, particularly when 

slow crystallisation kinetics are observable. As an ancillary technique, X-ray scattering 

studies would allow the detection of the development of different crystalline forms, thus 

helping to determine if different polymorphs can also be identified using FFC-NMR, 

similarly to T1 measurements at 60 MHz[60]. This would prove particularly helpful, as 

the mechanism of polymorphic transformations between the different polymorphs could 

be explored in further detail. 
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