1,227 research outputs found

    Direct observation of quark-hadron duality in the free neutron F-2 structure function

    Get PDF
    Using the recently published data from the BONuS(Barely Off-shell Nucleon Structure) experiment at Jefferson Lab, which utilized a spectator tagging technique to extract the inclusive electron-free neutron scattering cross section, we obtain the first direct observation of quark-hadron duality in the neutron F-2 structure function. The data are used to reconstruct the lowest few (N = 2, 4, and 6) moments of F-2 in the three prominent nucleon resonance regions, as well as the moments integrated over the entire resonance region. Comparison with moments computed from global parametrizations of parton distribution functions suggest that quark-hadron duality holds locally for the neutron in the second and third resonance regions down to Q(2) approximate to 1 GeV2, with violations possibly up to 20% observed in the first resonance region

    Cross sections for the gamma p -\u3e K*(+)Lambda and gamma p -\u3e K*(+)Sigma(0) reactions measured at CLAS

    Get PDF
    The first high-statistics cross sections for the reactions gamma p -\u3e K*(+)Lambda and gamma p -\u3e K*(+)Sigma(0) were measured using the CLAS detector at photon energies between threshold and 3.9 GeV at the Thomas Jefferson National Accelerator Facility. Differential cross sections are presented over the full range of the center-of-mass angles, and then fitted to Legendre polynomials to extract the total cross section. Results for the K*(+)Lambda final state are compared with two different calculations in an isobar and a Regge model, respectively. Theoretical calculations significantly underestimate the K*(+)Lambda total cross sections between 2.1 and 2.6 GeV, but are in better agreement with present data at higher photon energies

    Higher twist analysis of the proton g_1 structure function

    Get PDF
    We perform a global analysis of all available spin-dependent proton structure function data, covering a large range of Q^2, 1 < Q^2 < 30 GeV^2, and calculate the lowest moment of the g_1 structure function as a function of Q^2. From the Q^2 dependence of the lowest moment we extract matrix elements of twist-4 operators, and determine the color electric and magnetic polarizabilities of the proton to be \chi_E = 0.026 +- 0.015 (stat) + 0.021/-0.024 (sys) and \chi_B = -0.013 -+ 0.007 (stat) - 0.010/+0.012 (sys), respectively.Comment: 6 pages, 2 figures, to appear in Phys. Lett.

    A theory of normed simulations

    Get PDF
    In existing simulation proof techniques, a single step in a lower-level specification may be simulated by an extended execution fragment in a higher-level one. As a result, it is cumbersome to mechanize these techniques using general purpose theorem provers. Moreover, it is undecidable whether a given relation is a simulation, even if tautology checking is decidable for the underlying specification logic. This paper introduces various types of normed simulations. In a normed simulation, each step in a lower-level specification can be simulated by at most one step in the higher-level one, for any related pair of states. In earlier work we demonstrated that normed simulations are quite useful as a vehicle for the formalization of refinement proofs via theorem provers. Here we show that normed simulations also have pleasant theoretical properties: (1) under some reasonable assumptions, it is decidable whether a given relation is a normed forward simulation, provided tautology checking is decidable for the underlying logic; (2) at the semantic level, normed forward and backward simulations together form a complete proof method for establishing behavior inclusion, provided that the higher-level specification has finite invisible nondeterminism.Comment: 31 pages, 10figure

    Longitudinal Target-Spin Asymmetries for Deeply Virtual Compton Scattering

    Get PDF
    A measurement of the electroproduction of photons off protons in the deeply inelastic regime was performed at Jefferson Lab using a nearly 6 GeV electron beam, a longitudinally polarized proton target, and the CEBAF Large Acceptance Spectrometer. Target-spin asymmetries for ep. e\u27p\u27gamma. events, which arise from the interference of the deeply virtual Compton scattering and the Bethe-Heitler processes, were extracted over the widest kinematics in Q(2), x(B), t, and phi, for 166 four-dimensional bins. In the framework of generalized parton distributions, at leading twist the t dependence of these asymmetries provides insight into the spatial distribution of the axial charge of the proton, which appears to be concentrated in its center. These results also bring important and necessary constraints for the existing parametrizations of chiral-even generalized parton distributions

    Annotation: HvJ EG 2007-06-21

    Get PDF
    HvJ EG239239Trias Europea: de verhoudingen tussen de overheidsmachten in de EU en de lidstaten in een bewegend constitutioneel landscha

    Global Analysis of Data on the Proton Structure Function g1 and Extraction of its Moments

    Get PDF
    Inspired by recent measurements with the CLAS detector at Jefferson Lab, we perform a self-consistent analysis of world data on the proton structure function g1 in the range 0.17 < Q2 < 30 (GeV/c)**2. We compute for the first time low-order moments of g1 and study their evolution from small to large values of Q2. The analysis includes the latest data on both the unpolarized inclusive cross sections and the ratio R = sigmaL / sigmaT from Jefferson Lab, as well as a new model for the transverse asymmetry A2 in the resonance region. The contributions of both leading and higher twists are extracted, taking into account effects from radiative corrections beyond the next-to-leading order by means of soft-gluon resummation techniques. The leading twist is determined with remarkably good accuracy and is compared with the predictions obtained using various polarized parton distribution sets available in the literature. The contribution of higher twists to the g1 moments is found to be significantly larger than in the case of the unpolarized structure function F2.Comment: 18 pages, 13 figures, to appear in Phys. Rev.

    Anti-angiogenesis: making the tumor vulnerable to the immune system

    Get PDF
    Ongoing angiogenesis has been shown to possess immune suppressive activity through several mechanisms. One of these mechanisms is the suppression of adhesion receptors, such as intercellular adhesion molecule-1, vascular cell adhesion molecule-1 and E-selectin—adhesion molecules involved in leukocyte interactions—on the vascular endothelium. This phenomenon, when happening to the tumor endothelium, supports tumor growth due to escape from immunity. Since angiogenesis has this immune suppressive effect, it has been hypothesized that inhibition of angiogenesis may circumvent this problem. In vitro and in vivo data now show that several angiogenesis inhibitors are able to normalize endothelial adhesion molecule expression in tumor blood vessels, restore leukocyte vessel wall interactions, and enhance the inflammatory infiltrate in tumors. It is suggested that such angiogenesis inhibitors can make tumors more vulnerable for the immune system and may therefore be applied to facilitate immunotherapy approaches for the treatment of cancer

    Hadrons in the Nuclear Medium

    Get PDF
    Quantum Chromodynamics, the microscopic theory of strong interactions, has not yet been applied to the calculation of nuclear wave functions. However, it certainly provokes a number of specific questions and suggests the existence of novel phenomena in nuclear physics which are not part of the the traditional framework of the meson-nucleon description of nuclei. Many of these phenomena are related to high nuclear densities and the role of color in nucleonic interactions. Quantum fluctuations in the spatial separation between nucleons may lead to local high density configurations of cold nuclear matter in nuclei, up to four times larger than typical nuclear densities. We argue here that experiments utilizing the higher energies available upon completion of the Jefferson Laboratory energy upgrade will be able to probe the quark-gluon structure of such high density configurations and therefore elucidate the fundamental nature of nuclear matter. We review three key experimental programs: quasi-elastic electro-disintegration of light nuclei, deep inelastic scattering from nuclei at x>1x>1, and the measurement of tagged structure functions. These interrelated programs are all aimed at the exploration of the quark structure of high density nuclear configurations. The study of the QCD dynamics of elementary hard processes is another important research direction and nuclei provide a unique avenue to explore these dynamics. We argue that the use of nuclear targets and large values of momentum transfer at would allow us to determine whether the physics of the nucleon form factors is dominated by spatially small configurations of three quarks.Comment: 52 pages IOP style LaTex file and 20 eps figure

    Coherent photoproduction of pi(+) from He-3

    Get PDF
    We have measured the differential cross section for the gamma He-3 -\u3e pi(+)t reaction. This reaction was studied using the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Real photons produced with the Hall-B bremsstrahlung tagging system in the energy range from 0.50 to 1.55 GeV were incident on a cryogenic liquid He-3 target. The differential cross sections for the gamma He-3 -\u3e pi(+)t reaction were measured as a function of photon-beam energy and pion-scattering angle. Theoretical predictions to date cannot explain the large cross sections except at backward angles, showing that additional components must be added to the model
    • …
    corecore