
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Physics Faculty Publications Physics 

2005 

Higher Twist Analysis of the Proton g₁ Structure Function Higher Twist Analysis of the Proton g  Structure Function 

M. Osipenko 

W. Melnitchouk 

S. Simula 

P. Bosted 

V. Burkert 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.odu.edu/physics_fac_pubs 

 Part of the Astrophysics and Astronomy Commons, Elementary Particles and Fields and String Theory 

Commons, and the Quantum Physics Commons 

Original Publication Citation Original Publication Citation 
Osipenko, M., Melnitchouk, W., Simula, S., Bosted, P., Burkert, V., Christy, M. E., Griffioen, K., Keppel, C., & 
Kuhn, S. E. (2005). Higher twist analysis of the proton g₁ structure function. Physics Letters B, 609(3-4), 
259-264. https://doi.org/10.1016/j.physletb.2005.01.071 

This Article is brought to you for free and open access by the Physics at ODU Digital Commons. It has been 
accepted for inclusion in Physics Faculty Publications by an authorized administrator of ODU Digital Commons. For 
more information, please contact digitalcommons@odu.edu. 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/physics_fac_pubs
https://digitalcommons.odu.edu/physics
https://digitalcommons.odu.edu/physics_fac_pubs?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/199?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/199?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=digitalcommons.odu.edu%2Fphysics_fac_pubs%2F507&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1016/j.physletb.2005.01.071
mailto:digitalcommons@odu.edu


Authors Authors 
M. Osipenko, W. Melnitchouk, S. Simula, P. Bosted, V. Burkert, M. E. Christy, K. Griffioen, C. Keppel, and S. 
E. Kuhn 

This article is available at ODU Digital Commons: https://digitalcommons.odu.edu/physics_fac_pubs/507 

https://digitalcommons.odu.edu/physics_fac_pubs/507


Physics Letters B 609 (2005) 259–264

www.elsevier.com/locate/physletb

Higher twist analysis of the protong1 structure function

M. Osipenkoa, W. Melnitchoukb, S. Simulac, P. Bostedb, V. Burkertb, M.E. Christyd,
K. Griffioene, C. Keppelb,d, S.E. Kuhnf

a INFN, Sezione di Genova, 16146 Genoa, Italy
b Jefferson Lab, 12000 Jefferson Avenue, Newport News, VA 23606, USA

c INFN, Sezione Roma III, 00146 Roma, Italy
d Hampton University, Hampton, VA 23668, USA

e College of William & Mary, Williamsburg, VA 23187, USA
f Old Dominion University, Norfolk, VA 23529, USA

Received 23 November 2004; accepted 12 January 2005

Available online 2 February 2005

Editor: W. Haxton

Abstract

We perform a global analysis of all available spin-dependent proton structure function data, covering a large range ofQ2, 1�
Q2 � 30 GeV2, and calculate the lowest moment of theg1 structure function as a function ofQ2. From theQ2 dependence of
the lowest moment we extract matrix elements of twist-4 operators, and determine the color electric and magnetic polarizabilities
of the proton to beχE = 0.026± 0.015(stat) ± 0.021

0.024(sys) andχB = −0.013∓ 0.007(stat) ∓ 0.010
0.012(sys), respectively.

 2005 Elsevier B.V. All rights reserved.

PACS: 12.38.Aw; 12.38.Qk; 13.60.Hb

Measurements of spin-dependent structure func-
tions of the proton reveal fundamental information
about the proton’s quark and gluon structure. In the
quark–parton model, theg1 structure function is in-
terpreted in terms of distributions of quarks carrying
light-cone momentum fractionx, with spins aligned
versus anti-aligned with that of the nucleon. The low-
est moment, or integral overx, of g1 also determines
the total spin carried by quarks in the nucleon.

E-mail address: wmelnitc@jlab.org(W. Melnitchouk).

Although most structure function studies have fo-
cused on the scaling regime at high four-momentum
transfer squared,Q2, the behavior ofg1 and its mo-
ments in the transition region at intermediateQ2

(∼1 GeV2) can reveal rich information about the long-
distance structure of the nucleon. One example of
the complexity of this region is the transition from
the Bjorken or Ellis–Jaffe sum rules at highQ2 to the
Gerasimov–Drell–Hearn sum rule atQ2 = 0 [1].

Of particular importance in this region is the role
of the nucleon resonances, and the interplay between
resonant and scaling contributions. According to the

0370-2693/$ – see front matter 2005 Elsevier B.V. All rights reserved.
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operator product expansion (OPE) in QCD, the ap-
pearance of scaling violations at lowQ2 is related
to the size of higher twist corrections to moments of
structure functions[2]. Higher twists are expressed
as matrix elements of operators involving nonpertur-
bative interactions between quarks and gluons. The
study of higher twist corrections thus gives us direct
insight into the nature of long-range quark–gluon cor-
relations.

In this Letter we determine the size of the higher
twist contributions to the lowest moment of theg1
structure function of the proton. We analyze the entire
set of available data from experiments at SLAC[3–6],
CERN [7,8], DESY [9], and most recently Jeffer-
son Lab[10], where high-precision data in the res-
onance region and at low and intermediateQ2 have
been taken. Combining the moment data from the var-
ious experiments is nontrivial, however, since different
analyses typically make use of different assumptions
about extrapolations into unmeasured regions of kine-
matics. In the present analysis, we therefore extract the
structure function moment using a single set of inputs
and assumptions forall the data.

The lowest (Cornwall–Norton) moment of the pro-
tong1 structure function is defined as

(1)Γ1
(
Q2) =

1∫
0

dx g1
(
x,Q2).

The upper limit includes the proton elastic contribu-
tion atx ≡ Q2/2Mν = 1, whereν is the energy trans-
fer, andM is the proton mass. The inclusion of the
elastic component is essential if one wishes to use the
OPE to study the evolution of the integral in the mod-
erateQ2 region[11].

From the OPE, at largeQ2 the momentΓ1 can
be expanded in powers of 1/Q2, with the expansion
coefficients related to nucleon matrix elements of op-
erators of a definite twist (defined as the dimension
minus the spin of the operator). At highQ2 the mo-
ment is dominated by the leading twist contribution,
µ2, which is given in terms of matrix elements of the
twist-2 axial vector current,̄ψγ µγ5ψ . This can be de-
composed into flavor singlet and nonsinglet contribu-
tions as

(2)µ2
(
Q2) = Cs

(
Q2)ainv

0

9
+ Cns

(
Q2)( a3

12
+ a8

36

)
,

whereCs andCns are the singlet and nonsinglet Wil-
son coefficients, respectively[12], which are calcu-
lated as a series inαs . The triplet and octet axial
charges,a3 = gA = 1.267 anda8 = 0.58, are extracted
from weak decay matrix elements. For the singlet axial
charge, we work with the renormalization group in-
variant definition in theMS scheme,ainv

0 = a0 (Q2 =
∞), in which all of theQ2 dependence is factorized
into the Wilson coefficientCs.

Considerable effort has been made over the past
two decades in determining the singlet axial charge,
which in the quark–parton model is identified with the
total spin carried by quarks in the proton. In this work
we focus instead on using the world’s data to extract
the coefficient of the 1/Q2 subleading, twist-4 term,
which contains information on quark–gluon correla-
tions in the nucleon.

In addition to the twist-4 matrix element, the 1/Q2

term also contains so-called “kinematic” higher twists,
associated with target mass corrections (which are for-
mally twist-2), and theg2 structure function, which is
obtained from measurements with transversely polar-
ized targets. One technique for removing these from
the 1/Q2 correction is to work in terms of the Nacht-
mann moment[13],

M1
(
Q2) =

1∫
0

dx
ξ2

x2

{
g1

(
x,Q2)(x

ξ
− 1

9

M2xξ

Q2

)

(3)− g2
(
x,Q2)4

3

M2x2

Q2

}
,

whereξ = 2x/(1 + √
1+ 4M2x2/Q2) is the Nacht-

mann scaling variable. The twist expansion ofM1(Q
2)

then yields

(4)M1
(
Q2) = µ2

(
Q2) + µ4(Q

2)

Q2
+ µ6(Q

2)

Q4
+ · · · ,

whereµ2 is given in Eq.(2). The 1/Q2 correction in
Eq.(4) exposes directly the “dynamical” twist-4 coef-
ficient f2, sinceµ4(Q

2) = 4f2(Q
2)/9M2, wheref2

is given in terms of a mixed quark–gluon operator,

(5)f2
(
Q2)M2Sµ = 1

2

∑
q

e2
q〈N |gψ̄qG̃µνγνψq |N〉.

HereG̃µν = 1
2εµναβGαβ is the dual of the gluon field

strength tensor,Sµ is the proton spin vector,g is the
strong coupling constant, andeq is the quark charge.
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Clearly the 1/Q2 term can be best determined in
the intermediateQ2 region, whereQ2 is neither so
large as to completely suppress the higher twists, nor
so small as to render the twist expansion unreliable.
A meaningful analysis of data from different experi-
ments further requires that the same set of inputs be
used in the determination ofg1, as well asg2.

In practice one must reconstructg1 from a combi-
nation of longitudinal (A‖) and transverse (A⊥) polar-
ization asymmetries, together with the unpolarizedF1
structure function, and the ratioR of the longitudinal
to transverse cross sections. We begin by collecting all
available data onA‖, as published in Refs.[3–10], and
use the same inputs in the analysis ofA⊥, F1 andR

for all the data sets.
To provide a realistic description ofA⊥, or equiva-

lently A2 (which is given in terms ofA‖ andA⊥ [5]),
we consider both the resonance and nonresonant back-
ground contributions. For the background we use the
(twist-2) Wandzura–Wilczek (WW) relation[14]. In-
clusion of target mass corrections in the WW for-
mula [14] enables this prescription to be used down
to low Q2, where target mass corrections are known
to be important[2]. In the resonance region, how-
ever, the WW approximation fails, and here alterna-
tive parameterizations are required. We calculate the
resonance contribution from the electromagnetic he-
licity amplitudes S1/2(Q

2) and A1/2(Q
2) obtained

in the constituent quark model[15], which includes
14 major resonances. The resonance contribution is
then normalized to satisfy the Burkhardt–Cottingham
sum rule[16]. The A2 model is consistent with the
available data[17,18], as well as with the model-
independent Soffer bound[19].

For the ratio R(x,Q2) we use a new parame-
trization based on Rosenbluth-separated cross sec-
tions [20,21], which is adapted to the low-Q2 and
low-W2 region, and smoothly interpolates to the ear-
lier parameterization of the deep inelastic region from
Ref. [22]. This parameterization uses all published
data in the resonance region[23], as well as new data
from Ref.[20].

The spin-averaged proton cross section is well de-
termined in both the resonance and deep inelastic re-
gions. At highQ2 the effect ofR is small and the dif-
ferential cross sectiondσ/dΩ dE′ is proportional to
F2 (or F1). At moderateQ2, however, the extraction of
F1 andF2 from the cross section requires knowledge

Fig. 1. Protong1 structure function at several differentQ2 values.
The points represent reanalyzed experimental data obtained from
the longitudinal asymmetryA‖ from Refs.[3–10] using the proce-
dure described in the text. The vertical arrows indicate the boundary
between the resonance (to the right of the arrow) and deep inelastic
regions (W = 2 GeV).

of R. Using the parametrization ofR from Ref. [20],
we constructed a database of world data onF1 from
which values ofF1 corresponding to the measuredA‖
kinematic points were obtained by interpolation. Most
of the data points forA‖ have kinematically close
sets ofd2σ/dΩ dE′ points, which allows interpola-
tion uncertainties to be minimized. Full details of the
extraction ofg1 will be provided in a forthcoming pub-
lication [21].

The resultingg1 structure function is illustrated in
Fig. 1 as a function ofx for several representative
Q2 values. The vertical arrows indicate the boundary
between the resonance and deep inelastic regions at
W = 2 GeV. At the lowerQ2 values,Q2 ∼ 1 GeV2,
a significant portion of thex range is in the resonance
region (contributing∼ 40% of the magnitude of the
lowest moment).

The first moment ofg1 is evaluated using the same
method as in recent analyses of the unpolarized proton
F2 structure function moments[24,25]. This method
is essentially independent of assumptions about thex
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Fig. 2. Q2 dependence of the Nachtmann momentM1(Q2). The
error bars are statistical, with the systematic errors indicated by
the hashed areas (see text). The leading twist (dashed), 1/Q2

(dot-dashed), 1/Q4 (dot-dot-dashed) and elastic (dotted) contribu-
tions are shown separately. The solid curve is the sum of leading and
higher twist terms.

dependence of the structure function when interpolat-
ing between data points, and is therefore well-suited
for a study ofQ2 evolution of the moments. For the
low-x extrapolation, beyond the region where data ex-
ist, we use the Regge model-inspired parametrization
from Ref.[26]. To estimate the uncertainty associated
with the low-x extrapolation, we also consider other
parameterizations[27], and take the maximum differ-
ence between the respective low-x contributions as the
error.

The resulting Nachtmann momentM1(Q
2) is

shown in Fig. 2, where the error bars on the data
points are statistical only. The systematic errors, some
of which are correlated, are shown separately in the
hashed areas above the data, and represent uncertain-
ties from the low-x extrapolation (lower hashed area),
and the experimental systematic errors together with
those fromA2, R and an estimated 5% uncertainty on
the elastic contribution (upper hashed area). Theg2
contribution toM1 is obtained fromA‖, A⊥, andF1,
as determined from the present analysis (see Ref.[21]
for details).

The fit to the total momentM1(Q
2) uses three para-

meters,ainv
0 , f2 (orµ4) andµ6, with the nonsinglet ax-

ial charges (gA anda8) as inputs. For the leading twist
contribution we use a next-to-leading order approxi-
mation for the Wilson coefficients and the two-loop
expression forαs , which atQ2 = 1 GeV2 corresponds
to αNLO

s = 0.45± 0.05 in theMS scheme.

In fitting the parameters, we have considered both
multiparameter (simultaneous) fits and sequential fits,
in which the leading twist termainv

0 is first fitted to
the high-Q2 data, and then the higher twist terms
are extracted. While both methods should in princi-
ple yield the same results when the experimental errors
are small, in practice the multiparameter fit may not be
the most suitable choice when emphasizing the high-
precision low-Q2 data. The multiparameter fit is most
effective when the errors on the data are similar across
the entireQ2 range, and the number of points in the
region which determines the leading twist contribution
(Q2 � 5 GeV2) is similar to that which constrains the
higher twists (Q2 � 5 GeV2).

Assuming the data at highQ2 are saturated by the
twist-2 term alone, the fit to theQ2 > 5 GeV2 data
determines the singlet axial charge to be

ainv
0 = 0.145± 0.018(stat) ± 0.103(sys)

(6)± 0.041(low x) ± 0.006
0.010(αs),

where the first and second errors are statistical and
systematic, the third comes from thex → 0 extrap-
olation, and the last is due to the uncertainty inαs .
We have considered the sensitivity of the results to
the value ofQ2 used to constrain the leading twist
term. We find thatainv

0 converges to the above value
for Q2 � 3–4 GeV2. Fitting theQ2 > 10 GeV2 data
would lead to practically the same values ofainv

0 , but
with a slightly larger error bar.

Having determined the twist-2 term from the high-
Q2 data, we now extract the 1/Q2 and 1/Q4 coeffi-
cients from the 1� Q2 � 5 GeV2 data, fixingainv

0 to
the above value, but allowing it to vary within its sta-
tistical errors. For the twist-4 coefficient we find

f2 = 0.039± 0.022(stat) ± 0.000
0.018(sys)

(7)± 0.030(low x) ± 0.007
0.011(αs),

normalized at a scaleQ2 = 1 GeV2 (theQ2 evolution
of f2 is implemented using the one-loop anomalous
dimensions calculated in Ref.[28]). The systematic
uncertainty onf2 is determined by refitting theM1
data shifted up or down by theM1 systematic uncer-
tainty shown inFig. 2(upper hashed area). The low-x

extrapolation uncertainty is determined by fitting the
M1 values shifted by the maximum difference between
the x → 0 contributions calculated with the parame-
terizations from Refs.[26,27] (lower hashed area in
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Fig. 2). The relative contribution from the low-x ex-
trapolation to the asymptotic value ofM1 is ≈ 7% and
15% atQ2 = 1 and 3 GeV2, respectively. However,
because thex → 0 extrapolation affects more the over-
all magnitude ofM1 rather than itsQ2 dependence,
the effect onf2 is relatively small.

For the 1/Q4 term, the best fit to the 1� Q2 �
5 GeV2 data yieldsµ6/M

4 = 0.011± 0.013(stat) ±
0.010
0.000(sys)± 0.011(low x)± 0.000(αs), with the errors
determined as forf2. Within the present level of accu-
racy theQ2 evolution of the coefficientµ6 can be ne-
glected. The 1/Q2 and 1/Q4 contributions toM1 are
illustrated inFig. 2. For comparison, the elastic contri-
bution is also shown, as is the sum of the leading plus
higher twist contributions. Since one is fittingM1 in
a relatively lowQ2 region, one may ask whether still
higher-order corrections could be significant beyond
those considered in Eq.(4). Adding a phenomenologi-
calµ8/Q

6 term to theQ2 > 1 GeV2 fit, and fixing the
other parameters to their quoted values, gives a coef-
ficient µ8/M

6 = −0.004± 0.004 which is consistent
with zero. To determineµ8 more precisely one needs
to go belowQ2 ∼ 1 GeV2, however, it is not clear that
the twist expansion is convergent at such lowQ2.

Simply fitting the entire 1< Q2 < 30 GeV2 data
set using a 3-parameter fit, the value of the sin-
glet charge would be essentially unchanged (ainv

0 =
0.145 ± 0.023(stat)), while the twist-4 coefficient
would be slightly smaller,f2 = 0.016± 0.039(stat),
but compatible with the above result(7) within uncer-
tainties (with similar systematic errors as in Eqs.(6)
and (7)).

In earlier phenomenological analyses[29,30]larger
values off2 were obtained. Using the SLAC-E143
data [5], Ref. [29] found f2 = 0.10 ± 0.05, while
Ref. [30] used in addition HERMES[9] and CLAS
[10] data to extract a valuef2 = 0.15–0.18. In both
cases, however, the 1/Q4 corrections in Eq.(4) were
not included, which we find important even forQ2 ∼
1 GeV2. This is particularly relevant for the analy-
sis in Ref.[30], which assumes that the higher twists
are dominated by the 1/Q2 term already atQ2 ∼
0.5 GeV2. If one were to redo the present analysis
with a 1-parameter fit as in Refs.[29,30], the statis-
tical error onf

p

2 from theQ2 > 1 GeV2 data would
be ∼ 0.005, which is 4–5 times smaller than that in
the 2-parameter fit, and gives a 2–3 smaller combined
statistical and systematic uncertainty than in Ref.[29].

The result of the present work(7) therefore represents
a significant improvement over the earlier analyses.

From the extractedf2 values one can calculate the
contribution of the collective color electric and mag-
netic fields to the spin of the proton. These are given
by [31,32]

(8)χE = 2

3
(2d2 + f2),

(9)χB = 1

3
(4d2 − f2),

whered2 is given by the matrix element of the twist-3
operatorψ̄(G̃µνγ α + G̃µαγ ν)ψ , and can be extracted
from the second moments ofg1 andg2,

(10)d2
(
Q2) =

1∫
0

dx x2[2g1
(
x,Q2) + 3g2

(
x,Q2)],

as determined from the present analysis. We find, how-
ever, that its leading twist component is negligible, and
consistent with zero.

Combining the extractedf2 andd2 values obtained
from the global analysis, we find

(11)χE = 0.026± 0.015(stat) ± 0.021
0.024(sys),

(12)χB = −0.013∓ 0.007(stat) ∓ 0.010
0.012(sys),

where the low-x extrapolation andαs uncertainties
have been folded into the total systematic error. Since
the color polarizabilities are dominated byf2, the sign
of the color electric polarizability is positive, while
that of the color magnetic polarizability is negative.
The upper limit onf2 in Eq. (7) thus yields non-zero
values forχE andχB , while the lower limit gives val-
ues which are close to zero.

These results can be compared to model calcu-
lations. QCD sum rules generally predict negative
values for the electric polarizabilities, and slightly pos-
itive values for the magnetic ones[31,33], χsum rule

E ≈
−(0.03–0.04) and χsum rule

B ≈ 0.01–0.02, in con-
trast to the results in Eqs.(11) and (12). Similar
results are found in the calculations based on the
instanton vacuum model[34], χ instanton

E ≈ −0.03
and χ instanton

B ≈ 0.015. The MIT bag model on the

other hand gives[11] χ
bag
E ≈ 0.03–0.05 andχ

bag
B ≈

0.00–0.02, which is consistent with our findings.
More precise measurements of the structure func-

tions atQ2 ≈ 1–10 GeV2, with smaller statistical and
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systematic errors, would reduce the uncertainty in the
extracted higher twist coefficients, as would better
knowledge ofαs at the relatively lowQ2 values dis-
cussed here. The present findings suggest that higher
twists in the lowest moment of the protong1 struc-
ture function are small and consistent with zero for
Q2 � 2–3 GeV2 (see also Refs.[26,29,35,36]), which
demonstrates, perhaps surprisingly, the usefulness of
the OPE formalism at these rather lowQ2 values.
Higher twists are expected to play a greater role in
higher moments, which emphasize more the large-x

region and receive larger resonance contributions at
the sameQ2 [21]. Better determination of theg2 struc-
ture function at moderate and highQ2 is also vital for
the determination of thed2 matrix element, as well as
of theg1 structure function itself.
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