Quantum Chromodynamics, the microscopic theory of strong interactions, has
not yet been applied to the calculation of nuclear wave functions. However, it
certainly provokes a number of specific questions and suggests the existence of
novel phenomena in nuclear physics which are not part of the the traditional
framework of the meson-nucleon description of nuclei. Many of these phenomena
are related to high nuclear densities and the role of color in nucleonic
interactions. Quantum fluctuations in the spatial separation between nucleons
may lead to local high density configurations of cold nuclear matter in nuclei,
up to four times larger than typical nuclear densities. We argue here that
experiments utilizing the higher energies available upon completion of the
Jefferson Laboratory energy upgrade will be able to probe the quark-gluon
structure of such high density configurations and therefore elucidate the
fundamental nature of nuclear matter. We review three key experimental
programs: quasi-elastic electro-disintegration of light nuclei, deep inelastic
scattering from nuclei at x>1, and the measurement of tagged structure
functions. These interrelated programs are all aimed at the exploration of the
quark structure of high density nuclear configurations.
The study of the QCD dynamics of elementary hard processes is another
important research direction and nuclei provide a unique avenue to explore
these dynamics. We argue that the use of nuclear targets and large values of
momentum transfer at would allow us to determine whether the physics of the
nucleon form factors is dominated by spatially small configurations of three
quarks.Comment: 52 pages IOP style LaTex file and 20 eps figure