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Global analysis of data on the proton structure function g, and the extraction of its moments
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Inspired by recent measurements with the CLAS detector at Jefferson Lab, we perform a self-consistent
analysis of world data on the proton structure function g, in the range 0.17 < Q% <30 (GeV/c)?. We
compute for the first time low-order moments of g, and study their evolution from small to large values of
Q?. The analysis includes the latest data on both the unpolarized inclusive cross sections and the ratio
R = o /oy from Jefferson Lab, as well as a new model for the transverse asymmetry A, in the resonance
region. The contributions of both leading and higher twists are extracted, taking into account effects from
radiative corrections beyond the next-to-leading order by means of soft-gluon resummation techniques.
The leading twist is determined with remarkably good accuracy and is compared with the predictions
obtained using various polarized parton distribution sets available in the literature. The contribution of
higher twists to the g; moments is found to be significantly larger than in the case of the unpolarized

structure function F,.

DOI: 10.1103/PhysRevD.71.054007

L. INTRODUCTION

One of the fundamental characterizations of nucleon
structure is the distribution of the nucleon spin among its
quark and gluon constituents. The classic tool for studying
the quark spin distributions experimentally has been in-
clusive lepton scattering off polarized protons and neu-
trons. These experiments have determined the g
structure function of the nucleon, which, in the framework
of the naive Quark-Parton Model (QPM)), is proportional to
the difference between the distributions of quarks with
spins aligned and antialigned to the nucleon spin. Sur-
prisingly, one finds that only 20%-30% of the proton
spin is carried by quarks—an observation which came to
be known as the ““proton spin crisis.”” Considerable effort,
both experimentally and theoretically, has subsequently
gone into understanding where the remaining fraction of
the proton spin resides—see Ref. [1] for recent reviews.

In terms of kinematics, most of the experimental study
has been focused on the high-Q? region, where the QPM
description is most applicable, and in the region of inter-
mediate and small Bjorken-x, which is important for eval-
uating parton model sum rules such as the Bjorken sum
rule. Qualitatively new information on the proton spin
structure can be obtained by studying the g; structure
function in the region of large Bjorken-x, at moderate
values of the squared four-momentum transfer Q?, in the
range from 1 to 5 (GeV/c)?. Such a kinematic region is
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characterized by the presence of nucleon resonances which
contribute to higher twist effects in the structure functions.

According to the operator product expansion (OPE) in
QCD, the Q*-evolution of structure function moments can
be described in terms of a 1/Q?, or twist, expansion, where
the leading twist [O(1) in 1/Q?] represents scattering from
individual partons, while higher twists [@(1/Q?%) and
higher] appear due to correlations among partons. The
inclusion of the contribution from the nucleon resonance
production regions is a relevant point of our study, because
resonances and Deep Inelastic Scattering (DIS) are closely
related by the phenomenon of local quark-hadron duality
[2—4]. The latter has been extensively investigated at
Jefferson Lab (JLab) for the case of the unpolarized struc-
ture function F, of the proton [5,6]. In the polarized case,
the contribution of the A(1232) resonance makes the
analysis rather more interesting: Since this resonance gives
rise to a negative contribution to the g, structure function,
while g, at high Q? is positive, one expects a breaking of
local duality to occur in the A region at least up to several
(GeV/c)? [T].

In this paper we report the results of a self-consistent
extraction of the proton structure function g, (x, 9%) and its
moments from the world data on the longitudinal polariza-
tion asymmetry A).. The extraction is based on a unique set
of inputs for the structure function F,, the ratio R =
o, /o and the transverse asymmetry A,. The complete
data set measured at Jefferson Lab [8—10], which covers
the entire resonance region with high precision, allows for
the first time the Q%-evolution of the g, moments to be
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accurately evaluated up to n = 7. The results for the first
moment have been presented in Ref. [11], where the twist-
4 matrix element was extracted, and the proton’s color
electric and magnetic polarizabilities determined. Here
we give the details of our analysis for all the moments up
ton=7.

In Sec. II we describe the OPE framework of the mo-
ment analysis for the polarized structure function g;. In
Sec. III we discuss the extraction of g; from the longitu-
dinal asymmetry A). The evaluation of the moments of g,
and their uncertainties is presented in Sec. III, and the
extraction of both leading and higher twists is described
in Sec. I'V. Finally, conclusions from this study are sum-
marized in Sec. V.

II. MOMENTS OF THE STRUCTURE FUNCTION g,

The complete Q>-evolution of the structure functions
can be obtained using the OPE [12] of the time-ordered
product of the two currents which enter into the virtual
photon-nucleon forward Compton scattering amplitude,

TIRJO)] =D fr(=2P)z* e .20y, (D

where Of, ,,  , are symmetric traceless operators of di-
mension d and twist ki = di — n, with « labeling differ-
ent operators of spin n. In Eq. (1), f%(—z?) are coefficient
functions, which are calculable in perturbative QCD
(pQCD) at short light-cone distances z2 = (ct)*> — 72 =
0. Since the imaginary part of the forward Compton scat-
tering amplitude is simply the hadronic tensor containing
the structure functions measured in DIS experiments,
Eq. (1) leads to the well-known twist expansion for the
Cornwall-Norton (CN) moments of g,(x, Q%) [13,14],

MEN(Q?) = fo L gV (x, 07)

_ o0 O M_Z(K—z)/z
S Euelis (010,05

k=24...
(2)

for n =1,3,5,.... Here wu is the renormalization scale,
0, () are the (reduced) matrix elements of operators
with definite spin n and twist k, containing information
about the nonperturbative structure of the target, and
E,.(u, Q) are dimensionless coefficient functions, which
can be expressed perturbatively as a power series of the
running coupling constant a,(Q?).

In the Bjorken limit (Q?, v — oo, with x = Q*/2Mv
fixed, where v is the energy transfer and M the nucleon
mass), only operators with spin n contribute to the nth CN
moment (2). At finite 9%, however, operators with different
spins can contribute. Consequently, the 1/Q? expansion of
the CN moment MSN(Q?) contains in addition target-mass
terms, proportional to powers of M?/Q?, which are for-
mally leading twist and of pure kinematical origin. It was

PHYSICAL REVIEW D 71, 054007 (2005)

shown by Nachtmann [15] in the unpolarized case, and
subsequently generalized to the polarized structure func-
tions in Ref. [14], that, even when M?/Q? is nonzero, the
moments can be redefined in such a way that only spin-n
operators contribute to the nth moment. This is achieved by
defining the ‘““Nachtmann moments” of g, as

n+1

2 M2 2
M@ = [ s = a0 03~ o )ﬂ
M2 4
- &(x, QZ)Q—;C nTnz} 3)

where ¢ = 2x/(1 + /1 + 4M?x*/Q?) is the Nachtmann

scaling variable. Note that the evaluation of the polarized
moments M, (Q?) requires the knowledge of both structure
functions g; and g,. In the DIS regime the contribution of
g, to Eq. (3) turns out to be typically small (see Ref. [7]).
On the other hand, in the nucleon resonance production
region the impact of g, is expected to be more significant,
and here the lack of experimental information on the
structure function g, can lead to systematic uncertainties.
Since the moments in Eq. (3) are totally inclusive, the
integral in the right-hand side of Eq. (3) contains also the
contribution from the elastic peak located at x = 1,

GE(QZ) + TGM(Qz)
2(1 + 1)

87(x, 0%) = 8(x = DGK(Q?) 4

Gp(Q*) — Gu(Q%)
2(1 + 7)

85'(x, 0%) = 8(x — DTG (Q?) &)

with Gg (Gy,) the proton electric (magnetic) elastic form
factor and 7 = Q?/4M?>.

Note that the structure function moments include the
resonance production region at low Q2 and high x, which
would be otherwise problematic to include in a twist
analysis performed directly in x-space. In addition, since
target-mass corrections are by definition subtracted from
the moments (3), the twist expansion of the Nachtmann
moments M, (Q?) directly reveals information on the non-
perturbative correlations between partons, without relying
on specific assumptions about the x-shape of the leading
twist.

For the leading twist contribution [k = 2 in Eq. (2)], one
finds the well-known logarithmic Q? evolution of both
singlet and nonsinglet moments. However, if one wants
to extend the analysis to small Q% and large x, where the
rest of the perturbative series becomes significant, some
procedure for the summation of higher orders of the pQCD
expansion, such as infrared renormalon models [16,17] or
soft-gluon resummation techniques [18—20], has to be
applied. For higher twists, k > 2, the power-suppressed
terms are related to quark-quark and quark-gluon correla-
tions, as schematically illustrated in Fig. 1, and should
become important at small Q2.
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Fi(x, 02) (A (x, 0
gi(x, Q%) = ll(i Sz){ ”(XDQ i (y — MAy(x, Qz)},
(6)
with
_ 2Mx &0 11— €E'/E
“J T E-eE "1+ eR(x, %)
@)

where E and E’ are the incident and scattered electron
energies and e is the virtual photon polarization. The ratio
R entering above was taken from the parametrization given
in Ref. [10] for the resonance production region, while in
the DIS domain the fit R1998 [29] was used.

Since the main goal of our analysis is a model indepen-
dent extraction of the moments of g, the structure function
F,(x, Q%) has been obtained directly from experimental
data. This has been possible because of the large amount
of high quality data on the inclusive electron scattering
cross section do/dQdE' and on the structure function F,,
covering both the resonance and DIS regions (for the list of
data used see Ref. [9]). Therefore, for each point of the
measured longitudinal asymmetry A we can find several
nearby points with either F, or the inclusive cross section
known from experiments. For the interpolation of
F(x, Q%) points, a simple procedure has been used, which
is described below.

Having a data point with the measured A at some fixed
X and Q%, we search in the combined database on the
inclusive cross section do/dQdE' and the structure func-
tion F, for several nearby experimental points. The search
procedure chooses a rectangular bin around the point with
coordinates (x, Q(z)) of such a size that the selected area
contains a number N of experimental points either from
do/dQdE' or from F,. The procedure then selects only
those configurations whose number of points N, <N <
Npax> Where N, =2 and N, = 6 in the resonance
region and N, = 1 and N,,,, = 4 in the DIS case. Once
a number of configurations have been collected (no more
than 20 sets), the procedure looks for a minimum in the
sum of the path integrals from each point (x;, Q%) of
measured do/dQdE' or F, to the bin center (x, Q(z)),

1 N (0.0
S(xp, = dl|F,(x, 2 8
O ) [(XhQ?) IFi(x 0] (8)

where the integral over d/ is taken along a straight line
connecting the point (x;, Q?) to the bin center (xo, 03). The
structure function F,(x, Q?) in this integral is constructed
using the fits of F, from Ref. [30] and of R from Ref. [29]
in DIS, while in the resonance production region Fy is
taken directly from Ref. [10]. The configuration selected is
that which minimizes the function S(x, Q%) in Eq. (8).

PHYSICAL REVIEW D 71, 054007 (2005)

From Fig. 2, and also from Fig. 1 of Ref. [9], one can see
that in the resonance region, which is covered by the data
from Ref. [8], the interpolation distances are very small,
thanks to the measurements of inclusive cross section in the
same kinematic range [5,9]. A set of experimental points of
do/dQdE' or F, identified above is converted to the
structure function F; according to

. MQE  1-¢ do
b O = o T ek o) aae.
and
1 + 4M2x2/ 02
Fi(x, 0%) = 9 pod. (10

2x[1 + R(x, 0%)]

All the F; points obtained within the given bin are aver-
aged together with their x; and Q? coordinates,

o 2y Fl(xv Q )

F](.X, Q ) 25%]()6,, Qz) (11)
PRI . (12
a3 5% (x, 02 :

(13)

S Z SF (xl, Q2)

° =25t o (x,, o) (19

and & is the statistical error of F;. The mean value of
F,(x, Q?) is then corrected by the bin centering correction
using the models of Refs. [10,29,30]. The value of the
correction turns out to be very small with respect to statis-
tical and systematic errors of the A data. Nevertheless, the
correction value has been propagated in the total system-
atic error obtained for F.

Once the transverse asymmetry A ; is known, A, can be
determined according to

where

1 {A” :|
A + I 15
2T+ 774“)[ d ()
where
2€ 1+ €
d=D 1+ € ¢=m e (16)

Since there are no experimental data on A in the reso-
nance region (see Fig. 3), we consider several models:
(i) The model-independent constraint provided by the
Soffer limit [31]:

A, + 1
2

|A,] < R. (17)
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FIG. 4. Q? dependence of the structure function g, at x =
0.38-0.42 obtained from the data in Refs. [8,21-28] using the
procedure described in the text. Open squares represent central
values obtained with the A, model described in Appendix A,
while the filled triangles indicate upper and lower Soffer limits.
The upper hatched area represents the difference between g
data points extracted with two different parametrizations of R
[10,17]; middle hatched area F}™ shows the difference between
g data points extracted using two different parametrizations of
F, [10,50]; lower hatched area FPM shows the difference be-
tween g; extracted from the F| parametrization and data inter-
polation as described in the text.

This inequality is exact and, provided A; and
R(x, Q%) are measured, gives unambiguous limits.
(i) Since it was shown in previous experiments that A,
is in fact much smaller than the Soffer limit [22],
one can simply assume A, = 0, with possible de-
viations from zero included in the systematic error.
(iii) In the present analysis we use a somewhat more
sophisticated model for A, which is described in
detail in Appendix A.

The Q? dependence of g(x, Q) at x = 0.38-0.42 is
shown in Fig. 4 using different assumptions about A, and
F,, which provides an estimate of the systematic errors.
The ranges and the averages for the various sources of
systematic errors on g; are collected in Table I.

TABLE I. Range and average of systematic errors on g; (ab-
solute value).
Source of uncertainties Variation range Average
A 1074-0.14 0.015
F, 1077-1.7 0.014
or/or 1074-0.015 0.002
A, 1077-0.015 0.004
Total 1074-1.7 0.025

PHYSICAL REVIEW D 71, 054007 (2005)

C. Moments of the structure function g,

As discussed in the introduction, the final goal of our
data analysis is the evaluation of the Nachtmann moments
of the structure function g;. The total Nachtmann moments
were computed as the sum of the elastic (M) and inelastic
(M'™) moments,

M, (Q%) = M;(Q%) + M} (Q?). (18)

The contribution from the elastic peak can be calculated by
inserting Egs. (4) and (5) into Eq. (3),

MEI(QZ) — %GM(QZ){GE(QZ)I_:_TGM(QZ)
T

2
n2 M2 5
|- erar et

n Gu(0») —Ge(@*) n ‘fel}’

1
1+7 n+2 (19

where & = 2/(1 + 1+ 1/7).

The evaluation of the inelastic moments M involves the
computation at fixed Q” of an integral over x. In practice
the integral over x was performed numerically using the
standard trapezoidal method in the program TRAPER [32].

The Q?-range from 0.17 to 30 (GeV/c)? was divided
into 24 bins increasing logarithmically with Q2. Within
each bin the world data were shifted to the central bin value
Q3 using the fit of g7(x, 0?) from Ref. [7], which covers
both the resonance and DIS regions,

g1(x, Q%) = g1(x, 0?) + [g5(x, 0*) — gf(x, Q3)] (20)

The difference between the actual and bin-centered data,
85 (x, 0%) = g7 (x, QF) — &7 (x, 02, 1)

is added to the systematic error of g; in the Nachtmann
moments extraction procedure. As an example, Fig. 5
shows the integrands I,(x, Q%) of two of the low-order
moments as a function of x at fixed Q. The significance
of the large-x region for higher moments can be clearly
seen.

To obtain a data set dense in x, which reduces the error in
the numerical integration, we performed an interpolation at
each fixed Q3 when two contiguous experimental data
points differed by more than V. The value of V depends
on kinematics: In the resonance regions, where the struc-
ture function exhibits strong variations, V has to be smaller
than half of the resonance widths, and is parametrized as
V = 0.03M?/Q>. Above the resonances, where g, is
smooth, to account for the fact that the available x region
decreases with decreasing Q?, we set V = 0.1. Finally, in
the low x region (x < 0.03) where the g; shape depends
weakly on Q2, but strongly on x, we set V = 0.005.

To fill the gap between two adjacent points x, and x;, we
used the interpolation function gi™(x, Q3), defined as the
parametrization from Ref. [7] offset to match the experi-

054007-5
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FIG. 5. Integrands of the Nachtmann moments at Q2 =
1 GeV? for the n = 1 (upper) and the n = 3 (lower) moments.

mental data on both edges of the interpolating range.
Assuming that the shape of the fit is correct, one has

g, Q) = p(Q)) + &7 (x, Q7). (22)

where the offset p(Q3) is defined as the weighted average,
evaluated using all experimental points located within an
interval A around x, or x:

lx;—x,|<A 2 s 2
N g1(x;, Qo gl(x,-, Qo)
= 82
p(QO) (Q0)|: Z [5:,‘121‘()6[, Q%)]Z
g](X', Q(Z)) - S(x]’ Q(Z))
[8§tat(x , QO)]Z ’ (23)

|x]-—x,7|<A

3

where 85(x;, Q) is the g; statistical error and

e —xq <A 1

R

|Xj_-7fl;|<A 1 —1/2
+ L S— 24
; stat(x]’ Q )]2i| ( )

is the statistical uncertainty of the mnormalization.
Therefore, the statistical error of the moments calculated
according to the trapezoidal rule [32] was increased by
adding the linearly correlated contribution from each in-

PHYSICAL REVIEW D 71, 054007 (2005)

terpolation interval as

§n+l

S(x Qo)

x_ @ﬁ
X[E (n+27 Q3 }

81™M(Q2) = 5y(02) f dx

(25)

Since we average the difference g;(x;, Q%) — g3 (x;, Q3),
A is not affected by the resonance structures, and its value
is fixed to have more than two experimental points in most
cases. Therefore, A is chosen to be equal to 0.15.

To fill the gap between the last experimental point and
one of the integration limits (x, = 0 or xb = 1), we per-
formed an extrapolation at each fixed Q3 using g7(x, 03)
including its uncertainty given in Ref. [7]. The results,
together with their statistical and systematic errors, are
presented in Table II.

D. Systematic errors of the moments

The systematic error consists of experimental uncertain-
ties in the data given in Refs. [8,21-28] and uncertainties
in the evaluation procedure. To estimate the first type of
error, we have to account for using many data sets mea-
sured at different laboratories and with different detectors.
In the present analysis we assume that different experi-
ments are independent and therefore only systematic errors
within a particular data set are correlated.

An upper limit for the contribution of the systematic
error from each data set was thus evaluated as follows:

(i) We first applied a simultaneous shift to all experi-
mental points in the data set by an amount equal to
their systematic error.

(i) The inelastic nth moment obtained using these
distorted data M“‘( (Q?) is then compared to the
original moments M‘“(QZ) evaluated with no sys-
tematic shifts.

(iii) Finally, the deviations for each data set were
summed in quadrature as independent values,

5D(Q2)—JZ[M Q%) — MIQ)P,  (26)

where Ny is the number of available data sets. The
resulting error is summed in quadrature with
dnom(2) to get the total systematic error on the
nth moment.
The second type of error is related to the bin centering,
interpolation and extrapolation. The bin centering system-
atic uncertainty was estimated as

5C(Q2)—ZK (x;, QIwi (0™ (xi, 00, (27)

where, according to the Nachtmann moment definition and
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TABLE II.

PHYSICAL REVIEW D 71, 054007 (2005)

The inelastic Nachtmann moments for n = 1,3,5 and 7 evaluated in the interval 0.17 = Q? = 30 (GeV/c)?. The

moments were evaluated for Q% bins with more than 50% data coverage. The data are reported together with the statistical and
systematic errors; the low-x extrapolation error is given for the first moment only (last number in the second column).

0* [(GeV/c)’]

M(Q%) x 1073

M;(0Q%) X 1074

Ms(Q%) X 107

M;(Q%) x 1076

0.17 —271x£7x12*6 —16.8 £25=*5 —85%£1%25 —48+0.6=*13
0.20 —230*x5£9*6 —17.0x2=*4 —84*£08=x2 —43x04=1.1
0.24 —42*x4+18*7 —16.1 =2 =*11 -11.0x1=7 —73x0.7x45
0.30 —89*x4x19*4 —26.62=*14 —228 £15=*11 —188*12*+93
0.35 9.6 x3*12%6 —239*x2=*8 —289*x2=*175 -312*15*+74
0.42 280x5*x11=x7 —139*x4=*9 —26.6 4 =10 -379*x5=*12
0.50 363 £4*x17*3 —132*4=*16 —31.0£5=*20 —48.4 £ 6 =27
0.60 434*+35*x15*4 —122*3=*16 —359*x4+24 —64.5£7*38
0.70 560+x3*14=*6 —01*x3%18 —284*+4=*30 —71.7£7=%53
0.84 69.0x3 13+ 1.5 1533+ 19 —87%£5%36 —484 1174
1.00 8533 £11x07 25.7*x25=*17 -7.0£5=*37 —81.1 £11*84
1.20 942 £35*x10%1 53.7*x3*17 57*7=*39 62.5 = 18 = 101
1.40 1024*11*x2 68.6 £4 =20 88 £ 7 £48 123 £19 £ 133
1.70 1143 *+16%2 929*+5=*20 150 = 11 =48 295 £32* 142
2.40 120+25*9=*3 108 x4+ 16 218+ 14 £ 46 572 =53 £ 152
3.00 124 +x3+x8%x3 107 x4+ 10

3.50 113=7*x18%1

4.20 12549 *35 110 x45+7

5.00 118x5*x11%4 8537 %16 153 = 18 £ 59 398 = 61 £ 236
6.00 1225582 1026 *8 21917 £ 18 664 * 84 + 56
8.40 1024 +7

10.00 128+ 11*x13*+4 565 £ 85 £ 66
15.50 1303*+16*4 888 £3 %16 187 =10 = 30 597 =51 £ 80
30.00 1254 *+10=x25 787 *5=*11 158 20 £23

the trapezoidal integration rule, one has

g&ntl X; n?>  M%*x?

2y _ Si 2 i L2t

Kn(xi; Q ) - x% gl(xr Q )|:E (n + 2)2 Q2 X; i|;
wi(0%) = (xi11 — x;-1)/2. (28)

The systematic error of the interpolation was estimated
by considering the possible change of the fitting function
slope in the interpolation interval, and was evaluated as a
difference in the normalization at different edges:

1 x;—x, | <A

5S(Q(2)) = |% Z [81(3% Q%) - gf(xi’ Q%)]

N;
1 lx;—xp|<A
J J

where N; and N; are the number of points used to evaluate
the sums. Since the structure function g, (x, Q%) is a smooth
function of x below resonances, on the limited x-interval
(smaller than V) the linear approximation gives a good
estimate. Thus, the error given in Eq. (29) accounts for
such a linear mismatch between the fitting function and the
data on the interpolation interval. Meanwhile, the CLAS
data cover all the resonance region and no interpolation

was used there. The total systematic error introduced in the
corresponding moment by the interpolation can therefore
be estimated as

0.02 [

0.018 |

0.016 | * *

0.014 |

0.012 |
E:H [ *
g o001t

0.008 |- * "

0.006 [

on

002F mm u

0'| 1
1 10

FIG. 6. Errors of the inelastic Nachtmann moment M;: The
open circles represent statistical errors; the stars show the
systematic error obtained in Eq. (31); the low-x extrapolation
error is indicated by filled squares.
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+1
& s

81 (x, Q2)
X

x n?>  M*x* €&
& wrr e s

51(02) = 55(Q2) j " dx

(30)

The systematic errors obtained by these procedures are
then summed in quadrature to give

on(0%) = \/[5’3(Q2)]2 +[87(QF +[83(0)F. (3D)

In order to study the systematic error on the extrapola-
tion at very low x, we compared the moments extracted
using different parametrizations of g;. We choose a Regge
inspired form from Ref. [7] and two QCD fits from
Refs. [33,34]. The difference was significant only for M,

0.30 ]
| e e
0.25 [ i E
0.20 | iéﬁ @M
C d ]
Ng 0.15 ié. —:
= [ 1 %%ees pa 0ge $° ]
= 0.10 F & 0 h
L AT ]
0.05 mm;i ]
N i AAA 1
0.00 F—5 &
ot
-0.05 T B
0.1 1 10
Q% (Gev/c)
0.012 — e —
[ N e
0.010 | ﬁ#} ]
0.008 |- ﬁ ég OF .
o 0.006 [ ‘ 1o ]
s’ L & ie ]
0.004 [ o ]
i G ]
0.002 . % " 4
L - ]
0.000 |—smmm—=e =
ool L |
0.1 1 10
Q% (GeV/c)®
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for which the various errors are shown in Fig. 6 and
separately given in Table II.

According to Eq. (18) the contribution from the proton
elastic peak should be added to the inelastic moments
obtained above. The Q? dependence of the proton elastic
form factors is parametrized as in Ref. [35], modified
accordingly to the recent data on G/G,, [36], as described
in Ref. [37]. The uncertainty on the form factors is taken to
be equal to 3% according to the analysis of Ref. [35], and is
added quadratically to both the statistic and the systematic
errors. The elastic contribution M¢'(Q?) turns out to be a
quite small correction for Q> = n (GeV/c)?>. Our final
results for the total (inelastic + elastic) moments with
n=1,3,5 and 7 are shown in Fig. 7. Note also that the
amount of the measured experimental contribution to
M, (Q?) is at least 50%, and the systematic uncertainties
increase significantly as Q? increases.

P e e e o TR ]
0.04 ﬁ% -
0.03 |- ? %{. (b)M,
NI L gi |
S ooz [ zﬁ‘.. -
z [ i . 1
0.01 |- S I ]
' [ LS L) LI
Em
L 5] AA
0.00 ot
L l |
0.1 1 10
Q® (GeV/c)
I a_mﬂzﬂ%
0.004 - -
0.003 | §é %} @M,
- b
€ 0002 | ¢ ¢ -
b3 r [ i 1
L . _
0.001 | o ]
i ‘A m .LI‘J Q [ ] 1
, = B
0.000 —Errmmrmms
I sl L ol
0.1 1 10
Q% (GeV/c)?

FIG. 7. Total (inelastic + elastic) Nachtmann moments M, (Q?) (filled circles) [see Eq. (18)] extracted from the proton world data in
the range 0.17 < Q% = 30 (GeV/c)?> for n =1,3,5 and 7. Open squares and triangles correspond to the inelastic and elastic
contributions, respectively. Statistical errors are reported for all three terms; in the case of the total moments the systematic errors are

represented by the shaded bands.
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IV. EXTRACTION OF LEADING AND HIGHER
TWISTS

In this section we present our analysis of the moments
M, (Q?) with n > 1. We extract both the leading and higher
twist contributions to the moments, including a determi-
nation of the effective anomalous dimensions.

Results for the first moment M, (Q?) were presented in
Ref. [11]. There the highest Q%-points [Q* > 5 (GeV/c)?]
were used to obtain the singlet axial charge, which for the
renormalization group invariant definition in the MS
scheme (which is adopted throughout this paper) gave

al™v = 0.145 = 0.018(stat) = 0.103(syst) =

0.041 (low x) =59% (a,), where the first and second errors
are statistical and systematic, the third is from the x — 0
extrapolation, and the last is due to the uncertainty in «;.
From the Q2 dependence of the first moment, the matrix
elements of twist-4 operators were extracted, which al-
lowed a precise determination of the color electric and
magnetic polarizabilities of the proton (see Ref. [11] for
details).

As has been discussed in Refs. [7,9,17,19], the extrac-
tion of higher twists at large x is sensitive to the effects of
high-order pQCD corrections, for both the polarized and
unpolarized cases. In particular, the use of the next-to-
leading order (NLO) approximation for the leading twist
is known to lead to unreliable results for the determination
of the higher twists in the proton F, at large x [19]. In this
work we follow Refs. [7,9,19], where the pQCD correc-
tions beyond the NLO are estimated according to soft-
gluon resummation (SGR) techniques [18] and a pure
nonsinglet (NS) evolution is assumed for n = 3.!
However, in contrast to Refs. [7,9,19], where SGR was
considered for the quark coefficient function only, we
consistently add in this work the resummation of large-n
logarithms appearing also in the one-loop and two-loop NS
anomalous dimensions. This was previously used in
Ref. [20] to determine the strong coupling constant
a,(M2%) from the experimental moments of the proton F,
structure function determined in Ref. [9].

Within the above framework, the Nachtmann moment of
the leading twist part of the g, structure function, 81,,(Q?),
is (for n = 3) explicitly given by
{aS(Q%

81,(0%) = 84,[a, (0] SRS

+ o1+ S o+ 4540 |

(32)

where the constant 6A,, is defined to be the nth moment of
the leading twist at the renormalization scale w2, and y}®

"This approximation is reasonable because of the effective
decoupling of the pQCD evolution of the singlet quark and gluon
densities at large x.

PHYSICAL REVIEW D 71, 054007 (2005)

is the one-loop NS anomalous dimension. In Eq. (32) the
quantity SRYS is given by

(SRES _ 2[5C,(1NLO) C]%\%O) C(NLO)] + A’yfll'NS)

n,LOG
- AR - A &
where
AV(INS) = ‘}’511 ,NS) %ylr:ls (34)
0

with y(l NS) being the two-loop NS anomalous dimension,
Bo =11 —2N,;/3, B; = 102 — 38N,/3 and N the num-
ber of active quark flavors at the scale Q2.

In Eq. (33) SC'NO) is the NLO part of the quark coef-
ficient function, which in the MS scheme is given by

3 1
(NLO) _ 4+ -
5Cn CF{SI(H)[SI(H) 2 n(n T 1)i|
1 1 1 9
- S S
Sa(n) 2n n+1 n? 2} (33)

where Cp = (NZ — 1)/(2N,) and Si(n) = ¥, 1/j*. For
large n (corresponding to the large-x region), the coeffi-

cient Cf,NLO) is logarithmically divergent; indeed, since
S,(n) = yg +log(n) + O(1/n), where yp=0.577216

is the Euler-Mascheroni constant, and S,(n) =
/6 + O(1/n), one gets

SCN = OO + N+ 0(1/n),  (36)
with

- +in-3-T] @
and

3
CS\ILLS(; = CFln(”)[ln(n) + 2y + §j| (38)

For the quantity Ay(l NS

A’)/(INS) _ A (lNS) + A,ynLS) + @(l/l’l) (39)

in Eq. (34) one obtains

where

Avpis = [C;; {CF[%TQ + 325(c0) — 4S5(e0) — %}

+c{ 22 2 165(s0 )—ﬂ

[4— }+ yE<8K 4B‘> +3&}

9 Bo Bo
(40)
and
Cr
Ay = BO[SK 4g(1):|1n(n), (41)
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with Cy=N,, §(o0) = 32, (=1)/8,()/j* =
—0.751286, S3(0) = 1.202057 and K = C,(67/18 —
7/6) — 5N;/9.

In Eq. (32) the function G, (Q?) is the key quantity of the
soft-gluon resummation. At next-to-leading log (NLL)
accuracy, one has

G,(0%) = In(n)G(A,) + G5(A,) + Olafin*"(n)], (42)
where A, = Bya,(Q?)In(n)/47 and

Gi(A) = CF%[A £ (1= A)In(1 - A)]
GoA) = —C,p 2 EE S -y - cFS—Ig In(1 — A)
Bo Bo
+ CF% In(1 — A)[l + % In(1 — /\)} @3)

Note that the function G,(A) is divergent for A — 1; this
means that at large 7 (i.e., large x) SGR cannot be extended
to arbitrarily low values of Q. Therefore, to be sure that
the SGR technique can be used reliably at NLL accuracy it
is essential to check that A, is small enough, which in our
case means restricting the twist analysis to the Q® range
above 0.8 + 1 (GeV/c)?.

It is straightforward to see that in the limit A, << 1 one
has G,(0%) — a,(Q)2CN' S0 + Ay o51/4m, so that
Eq. (32) reduces to the well-known NLO approximation.
This implies that adopting the usual two-loop approxima-
tion for the running coupling constant a,(Q?), the twist-2
expression (32) contains all the NLO effects and the re-
summation of all the large-n logarithms beyond the NLO.

The different running of the leading twist induced by
resummation effects beyond the NLO has been investi-
gated in Ref. [19] for the unpolarized case, and in
Ref. [7] for the moments of the proton g; structure func-
tion. It was found that, with respect to the NLO approxi-
mation, SGR effects enhance significantly the Q? evolution
of the leading twist moments at Q> = few (GeV/c)?, and
that such an enhancement increases as the order n of the
moment increases.

As far as power corrections are concerned, several
higher twist operators exist and mix under the renormal-
ization group equations. Such mixings are rather involved
and the number of mixing operators increases with the
order n of the moment. A complete calculation of the
higher twist anomalous dimensions is not yet available,
and therefore one has to use specific models or some
phenomenological ansatz.

An interesting model for higher twists is the renormalon
model [16], which can be used as a guide to estimate the
x-shape of the higher twists (or more precisely, of the twist-
4 and twist-6 terms). The renormalon model contains only
one free parameter, which means that it predicts the de-
pendence of the higher twist contribution to the moments
upon the order n up to an overall unknown constant. It is

PHYSICAL REVIEW D 71, 054007 (2005)

also characterized by the fact that the renormalon anoma-
lous dimensions are the same as the leading twist ones.
However, in Refs. [16,17] it was already found that the
renormalon model cannot explain simultaneously the
power corrections to the transverse and longitudinal chan-
nels. Moreover, several phenomenological extractions of
higher twist anomalous dimensions made in
Refs. [7,9,17,19,38] suggest that the latter may differ sig-
nificantly from the leading twist ones. Therefore, in this
work we use the same phenomenological ansatz as adopted
in Refs. [7,9,17,19,38] (and in Ref. [11] for the n =1
moment), which does not exclude the renormalon picture,
but is more general.

To be specific, the Nachtmann moments are analyzed in
terms of the following twist expansion:

M} (Q%) = 67,(Q%) + HT,(Q?), (44)

where the higher twist contribution HT,,(Q?) is comprised
of twist-4 and twist-6 terms of the form

as(QZ)TY‘J” 2

HT, (0% = 5a5:°[

ag(u?) 0?
2 F) 5‘6) 4
L

where the logarithmic pQCD evolution of the twist-« con-
T W .

tribution is accounted for by the term [a,(Q?)]%?" with an

effective anomalous dimension 8)/51'0 , and the parameter

6a5,'<) represents the overall strength of the twist-x term at
the renormalization scale w>.

In Eq. (45) only twist-4 and twist-6 terms are included.
In practice the number of higher twist terms to be consid-
ered is mainly governed by the Q*-range of the analysis.
Indeed, as the latter is extended down to lower values of
Q?, more higher twist terms are expected to contribute.
Here we note that (i) the inclusion of twist-4 and twist-6
terms works well for Q%> = 1 (GeV/c)?, as already found
in the case of the unpolarized moments [9,17,19], and (ii)
our least- y? fitting procedure turns out to be sensitive to the
presence of a twist-8 term only for Q? <1 (GeV/c)?,
where the resummation of high-order perturbative correc-
tions may start to break down. Therefore, we limit our-
selves to considering only twist-4 and twist-6 terms in the
analyses for 0> = 1 (GeV/c)>.

All the unknown parameters, namely, the twist-2 coef-
ficient 64,, as well as the four higher twist parameters
8a5,4), 1) y£,4), 8(15,6) and 6 yﬁf), are for each order n simulta-
neously determined from a y?-minimization procedure in
the Q? range between 1 and 30 (GeV/c)?. Changing the
minimum Q? value down to 0.7 = 0.8 (GeV/c)? does not
modify significantly the extracted values of the various
twist parameters. On the other hand, increasing the mini-
mum Q2 up to 2 (GeV/c)? leads to quite large uncertain-
ties in the values of the twist parameters, due to a large
decrease in the number of data points.
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Leading twist 67, and higher twist parameters, appearing in Eq. (45), extracted from the Nachtmann moments for

n =3 at the scale Q% = 1 (GeV/c)?. The first errors are statistical, while the upper and lower ones are systematic.

M, M M;
57, 0.0147 + 0.0005*09923 0.0057 = 0.0008*29909 0.0038 = 0.0005 50653
sa® 0.020 = 0.001+00% 0.0155 = 0.0007+09%47 0.0103 = 0.0005%,00%
5y 2.2+ 03798 23x05%53 26 £ 0.4%57
59 —0.012 = 0,002 70906 ~0.0127 = 0.0009 00015 —0.0108 = 0.0005%:00%
5y 3.0 = 0.6103 2.4 +0.8+01 2.9+ 05733

The strong coupling constant in this analysis has been
chosen to be ay (M%) = 0.118, consistent with the twist
analysis of the unpolarized moments made in Ref. [9]. The
(arbitrary) renormalization scale w is setto u = 1 GeV/c.
We point out that the high-Q? subset of the unpolarized

0.15 | ———ry
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0.00 U
1 10
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Latiak B 2 Py S

Q2 (GeV/c) 2

0.010 [ ———
0.005

0.000

~0.005 U l L R |

1 10

Q2 (GeV/C)2

Nachtmann moments of Ref. [9] were analyzed in Ref. [20]
in order to extract the value of a@,(M%), including
SGR effects up to NLL accuracy. The value found,
a,(M%) = 0.1188 = 0.0010(stat) = 0.0014(syst) (or
0.1188 * 0.0017 adding the errors in quadrature), was in

0.03 fy r ——
0.02 —
e
<
w 0.01 —
=
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_0_01|i L TR |
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FIG. 8. Results of the twist analysis for n = 1 (adapted from Ref. [11]) and for n = 3, 5 and 7 obtained in this work. Open circles
represent the Nachtmann moments, and the solid lines are fits to the moments using Eqs. (32), (44), and (45) with the parameters listed
in Table III. The twist-2 (dotted), twist-4 (dot-dashed), twist-6 (triple-dot-dashed) and total higher twist (dashed) contributions are

shown separately. The errors indicated are statistical.
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full agreement with the latest Particle Data Group world-
average value a (M%) = 0.1187 = 0.0020 [39].

The fitting procedure provides the best-fit values of the
twist parameters together with their statistical uncertain-
ties. The systematic uncertainties are, on the other hand,
obtained by adding the systematic errors to the experimen-
tal moments and repeating the twist extraction procedure.
Our results, including the uncertainties for each twist term
separately, are reported in Table III and in Fig. 8.? The ratio
of the total higher twist contribution, HT,(Q?), to the
leading twist term 87,(Q?), is shown in Fig. 9(a). Note
that, since the leading twist component of the moments is
directly extracted from the data, no specific functional
shape for the leading twist parton distributions is assumed
in our analysis. In the same way also our extracted higher
twists do not rely upon any assumption about their x-shape.

Our main results for the higher twists in Figs. 8 and 9 can
be summarized as follows:

(i) The extracted twist-2 term yields an important
contribution in the whole Q*-range of the present
analysis; it is determined quite accurately with an
uncertainty which does not exceed 15% (statistical)
and 20% (systematic).

(ii) The Q?-dependence of the data leaves room for a
higher twist contribution which runs slower than a
pure 1/Q? dependence, or may even become nega-
tive at the lowest values of Q2 and large n. This
requires in Eq. (45) a twist-6 term with a sign
opposite to that of the twist-4. As already noted in
Refs. [7,17,19], such opposite signs make the total
higher twist contribution smaller than its individual
terms (see dashed lines in Fig. 8).

(iii)) The extracted values of the higher twist anomalous
dimensions appear to be significantly larger than
the corresponding ones of the leading twist
(viz. yNS = 0.67,0.97, 1.17 for n = 3, 5, 7, respec-
tively, at N = 4).

(iv) The total higher twist contribution is important for
Q?* = few (GeV/c)?, and is still non-negligible
even at Q% =~ 10 (GeV/c)? for the higher moments.
Comparison with the higher twists extracted from
the moments of the unpolarized F, structure func-
tion [9] in Fig. 9 clearly shows that the total higher
twist contribution is significantly larger in the po-
larized case, as already observed in Ref. [7] and
also in agreement with the findings of Ref. [40].

?Note that for all the moments considered the data points at
0% = 5 (GeV/c)? are not reproduced by the twist expansion; in
fact, their inclusion gives rise to extremely large values of x> for
n =25 and n = 7. The central values of the twist parameters
reported in Table III are thus those obtained by excluding these
data points in the fitting procedure, however, the impact of these
points has been taken into account in the systematic errors in
Table III.
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1.0
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FIG. 9. (a) Ratio of the total higher twist [see Eq. (45)] to the
leading twist given in Eq. (32). Dotted line—M; (from
Ref. [11]); triple-dot-dashed line—AM3; dashed line—~M5; solid
line—M;. (b) Ratio of the total higher twist to the leading twist
obtained in the analysis of the unpolarized moments in Ref. [9].

The extracted twist-2 contribution is given in Table IV
and in Fig. 10, where it is compared with several NLO
parametrizations of spin-dependent parton distribution
functions (PDFs) [33,34,41,42]. For n = 1 the twist-2 mo-
ment obtained in Ref. [11] agrees well at large Q? with the
results of Refs. [41,42], whereas at lower Q2 our findings
are below the predictions of all the four PDF sets. We
should note, however, that in Ref. [11] a next-to-next-to-
next-to-leading order (N*LO) approximation was adopted,
since for the » = 1 moment the SGR effects are totally
absent. This gives rise to a running of the leading twist
which is faster than that at NLO. As n increases, our
extracted twist-2 runs faster around Q? =~ few (GeV/c)?,
in agreement with the findings of Refs. [7,19], i.e., the
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TABLE IV. The extracted leading twist contribution 7,(Q?) [see Eq. (32)], reported with statistical and systematic errors.

0* [(GeV/c)]

811(0%)

813(Q%) X 1072

815(Q%) X 1072

817(Q%) X 1072

1.00
1.20
1.40
1.70
2.40
3.00
3.50
4.20
5.00
6.00
8.40
10.00
15.50
30.00

0.1127 = 0.0030 = 0.0109
0.1148 = 0.0030 = 0.0109
0.1162 = 0.0030 = 0.0108
0.1176 = 0.0030 = 0.0108
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FIG. 10. The leading twist moments (open circles) extracted in the present analysis for n = 3 and in Ref. [11] for n = 1, compared
with the corresponding moments of various parton distribution sets: dotted [33]; triple-dot-dashed [34]; dashed [41]; solid [42].
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running is enhanced by SGR effects with respect to the
NLO scheme adopted in Refs. [33,34,41,42].

Note that at large Q% [ = 10 (GeV/c)?] the extracted
twist-2 contributions for n > 1 in Fig. 10 is systematically
below the parametrizations in Refs. [33,34,41,42], with the
discrepancy increasing with the order n. This would imply
PDFs lower than those of Refs. [33,34,41,42] at large x.
Such an effect may at least partially be due to the neglect,
or a different treatment, of higher twist effects in the
analyses of Refs. [33,34,41,42], which were carried out
in x-space (see, e.g., Ref. [40]). To fully unravel the origin
of the above differences is, however, beyond the aim of the
present paper.

V. CONCLUSIONS

We have presented a self-consistent analysis of world
data on the proton g; structure function in the range 0.17 <
0% <30 (GeV/c)?, including recent measurements per-
formed with the CLAS detector at Jefferson Lab [8]. This
analysis has made it possible to accurately compute for the
first time the low-order moments of g; and study their
evolution from small to large values of Q. Our analysis
includes the latest experimental results from Jefferson Lab
for the ratio R = o, /o and a new model for the trans-
verse asymmetry A, in the resonance production regions,
as well as the unpolarized cross sections measured recently
in the resonance region at Jefferson Lab [5,9].

Within the framework of the operator product expan-
sion, we have extracted from the experimental moments at
Q% = 1 (GeV/c)? the contributions of both leading and
higher twists. Effects from radiative corrections beyond the
next-to-leading order have been taken into account by
means of soft-gluon resummation techniques.

The leading twist has been determined with good accu-
racy, allowing detailed comparisons to be made with vari-
ous NLO polarized parton distribution functions obtained
from global analyses in Bjorken-x space. A faster running
in Q% is observed in our twist-2 moments due to the
inclusion of resummation effects beyond NLO. The
twist-2 moments are also found to lie slightly below those
calculated from the standard polarized PDFs, suggesting
that the latter overestimate the leading twist at large x. This
may reflect the different treatment of higher twist effects in
our analysis compared with those in the global PDF fits.

The contribution of higher twists to the polarized proton
structure function g; is found to be significantly larger than
for the unpolarized proton structure function F,, although
some cancellations between different twists occurs at
low Q2.

Improvements in the determination of both the leading
and higher twist terms are expected to come with the
availability of new CLAS data taken at Jefferson Lab
with the 6 GeV electron beam, which will provide an
extended kinematical coverage up to Q* =5 (GeV/c)>.
Beyond this, we anticipate significant progress in the mea-
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surement of polarized structure functions at higher Q% and
over a larger range of x with the upgrade of the Jefferson
Lab electron beam to 12 GeV.

ACKNOWLEDGMENTS

This work was supported by the Istituto Nazionale di
Fisica Nucleare, the French Commissariat a 1’Energie
Atomique, French Centre National de la Recherche
Scientifique, the U.S. Department of Energy and National
Science Foundation and the Korea Science and
Engineering Foundation. The Southeastern Universities
Research Association (SURA) operates the Thomas
Jefferson National Accelerator Facility for the United
States Department of Energy under Contract No. DE-
ACO05-84ER40150.

APPENDIX A: FIT OF THE PROTON
TRANSVERSE ASYMMETRY A4,

The parametrization of A, is based on an estimate of the
polarized transverse structure function gy by means of
resonance-background separation, where the resonance
part is taken from a constituent quark (CQ) model [43],
while the background is described according Wandzura-
Wilczek (WW) prescription [44]. As normalization, we use
the Burkhardt-Cottingham (BC) sum rule [45], for each Q?
value of the data. The BC sum rule implies that

| dvest 0 =0 (AD)
0
for any Q?, where the integration includes also the elastic
peak.

In practice it is more convenient to work with the purely

transverse structure function gy, which is defined as

gr(x, 0%) = gi(x, Q%) + g2 (x, 0?).

Decomposing g7 into leading twist, elastic and higher twist
terms, we can write

gr(x, 0%) = g¥W(x, 0%) + g8(0»)6(1 — x) + ghT(x, 0?)
(A3)

where the first term represents the (twist-2) WW relation
(which is found to be a good approximation in DIS), the
second term represents the elastic peak contribution, and
the third parametrizes the remaining (higher twist) part
of gr.

Next we make use of an ansatz which assumes that the
first term in Eq. (A3), g}V (x, 0?), is due to the background
contribution and the second term, g'T(x, 0?), contains
only the resonance part of the total cross section,

eV (x, 02) = gh¥(x, 0?),

(A2)

(A4)

g (x, 0%) = gF*(x, 0.
This ansatz is motivated partly by duality arguments [46]

(A5)
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as well as by recent findings in polarized structure function
studies, which suggest a picture in which the resonance
peaks fluctuate around a smooth background extrapolated
from the DIS regime. Clearly, this model neglects the
interference between resonances and the background,
which can play an important role in the total cross section.
However, given the absence of experimental guidance (at
least above the two-pion production threshold), this ap-
proach is the minimal one suitable for the present analysis.

Using the WW relation [44], one can rewrite g in
Eq. (A3) as

or(x, 02) = j %gmy, 02 + g2(0Y5(1 — )

+ gTT(x QZ)

From the BC sum rule in Eq. (A1) and the Fubini theorem
[47] we then find

(A6)

[ dx/giT(x, 0%) = g8(0?) — g5(0?)

QZ
T ’M? + 202
- Gr(0%)]

where Gg(Q?) and G,,(Q?) are the Sachs proton electric
and magnetic form factors.

The WW term g}V is calculated from the phenomeno-
logical parametrization of g; given in Ref. [7], which is
known to work well also in the resonance region and at the
photon point (Q* = 0). Furthermore, target-mass correc-
tions are applied in order to remove the kinematical effects
of working at finite Q2,

Gu(0H[Gu(0?)
(A7)

ww-Tmc _ 1 X [éw ,81(€") %ﬁ
8T 2 E & Iz + 02 7
/flhdé—/gl(f) %’ (A8)

where r = /1 + 4M?*x?/Q?. The resonance part of gy is

directly related to the longitudinal-transverse interference
term of the resonance production cross section,

res W, 2y — vMK LT W, 2 A9
L
where
' My20Q?
ULT(W,QZ)Z; Wa ———BW)S} ,(0*)A,2(0?).

(A10)

Here the sum runs over all nucleon excited states N*, B(W)
is the unit-area resonance shape described in the relativistic
Breit-Wigner approximation,
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WMres 1—‘res
(W2 - Adrzes)2 + Mrzesrrzes’

B(W) = (A11)

and ¢* is the 3-momentum transfer in the resonance rest
frame,

. 5 WZ_M2_Q21/2
q {Q + W } . (A12)

The helicity amplitude A;/,(Q?) is relatively well-
known for the most prominent resonances, while the lon-
gitudinal amplitude S} ,(Q?) is largely unexplored experi-
mentally, apart from the A(1232) resonance for which
some data do exist. Theoretical predictions for these am-
plitudes can be obtained from CQ models which success-
fully describe resonance mass spectra and some transverse
electromagnetic couplings. We use the CQ model from
Ref. [43] for both the A;/,(Q?) and S;/,(Q?) amplitudes
in order to calculate gi7° in Eq. (A9).

Unfortunately, the Q2-evolution of the couplings
Ay/>(0%) and S, /5(0%) in CQ models depends strongly on
the choice of the potential and other model parameters. In
order to improve this description we apply the BC sum rule
given in Eqs. (A1) and (A7) to the entire resonance part of

g%°. This amounts to modifying g’** by multiplying it by a
factor

85(0%) — 7(0%)
/xth dxgres(x’ Q2)

Therefore, at each given Q? the BC sum rule defines the
total area of the resonance structure function gi*.

N(Q?) =

(A13)

0.6 F

04F e

02

01 F

s by by by by by by b by Ly
1 11 12 13 14 15 16 1.7 1.8 19 2
W
FIG. 11. Constituent quark model calculations of A,(W, Q?) in
comparison with the MAID model predictions [48] at Q% =
1.3 (GeV/c)?: triangles show the calculations as described in the
text; solid (7 production), dashed (7 and 7) and dotted (7, 7,
KA and K2) lines represent MAID model calculations. The dot-

dashed curve indicates the upper Soffer limit on A,.
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GLOBAL ANALYSIS OF DATA ON THE PROTON ...
APPENDIX B: KINEMATIC HIGHER TWISTS

In order to estimate contribution of the kinematic twists
appearing in the expansion of the CN moments, we extract
from our data the inelastic part of the d, moment, defined
as

d,(0%) = [O L Bgr(n 00 - g1(x 0} (BI)

where the structure function gr(x, Q2) is described in

PHYSICAL REVIEW D 71, 054007 (2005)

Appendix A. The extracted values of d,(Q?) are given in
Table V and shown in Fig. 13.

The lowest twist component in d, is twist-3, although
higher twists can also contribute to d, at low Q. Note that
only the inelastic part of d, is extracted; the elastic con-
tribution has to be added separately for a twist analysis of
d,. The results indicate that at high Q7 the values of d,(Q?)
are consistent with a vanishing twist-3 contribution.
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