60 research outputs found

    Determination of the stellar (n,gamma) cross section of 40Ca with accelerator mass spectrometry

    Full text link
    The stellar (n,gamma) cross section of 40Ca at kT=25 keV has been measured with a combination of the activation technique and accelerator mass spectrometry (AMS). This combination is required when direct off-line counting of the produced activity is compromised by the long half-life and/or missing gamma-ray transitions. The neutron activations were performed at the Karlsruhe Van de Graaff accelerator using the quasistellar neutron spectrum of kT=25 keV produced by the 7Li(p,n)7Be reaction. The subsequent AMS measurements were carried out at the Vienna Environmental Research Accelerator (VERA) with a 3 MV tandem accelerator. The doubly magic 40Ca is a bottle-neck isotope in incomplete silicon burning, and its neutron capture cross section determines the amount of leakage, thus impacting on the eventual production of iron group elements. Because of its high abundance, 40Ca can also play a secondary role as "neutron poison" for the s-process. Previous determinations of this value at stellar energies were based on time-of-flight measurements. Our method uses an independent approach, and yields for the Maxwellian-averaged cross section at kT=30 keV a value of 30 keV= 5.73+/-0.34 mb.Comment: 8 pages, 3 figure

    The Cross Section of 3He(3He,2p)4He measured at Solar Energies

    Get PDF
    We report on the results of the \hethet\ experiment at the underground accelerator facility LUNA (Gran Sasso). For the first time the lowest projectile energies utilized for the cross section measurement correspond to energies below the center of the solar Gamow peak (E0E_{\rm 0}=22 keV). The data provide no evidence for the existence of a hypothetical resonance in the energy range investigated. Although no extrapolation is needed anymore (except for energies at the low-energy tail of the Gamow peak), the data must be corrected for the effects of electron screening, clearly observed the first time for the \hethet\ reaction. The effects are however larger than expected and not understood, leading presently to the largest uncertainty on the quoted Sb(E0)S_{\rm b}(E_{\rm 0}) value for bare nuclides (=5.40 MeV b).Comment: 18 pages, 10 postscript figures, Calculations concerning hypothetical resonanz added, Submitted to Phys. Rev. C., available at this URL: HTTP://www.lngs.infn.it/lngs/htexts/luna/luna.htm

    Association of the 894G>T polymorphism in the endothelial nitric oxide synthase gene with risk of acute myocardial infarction

    Get PDF
    Background: This study was designed to investigate the association of the 894G>T polymorphism in the eNOS gene with risk of acute myocardial infarction (AMI), extent of coronary artery disease (CAD) on coronary angiography, and in-hospital mortality after AMI. Methods: We studied 1602 consecutive patients who were enrolled in the GEMIG study. The control group was comprised by 727 individuals, who were randomly selected from the general adult population. Results: The prevalence of the Asp298 variant of eNOS was not found to be significantly and independently associated with risk of AMI (RR = 1.08, 95%CI = 0.77–1.51, P = 0.663), extent of CAD on angiography (OR = 1.18, 95%CI = 0.63–2.23, P = 0.605) and in-hospital mortality (RR = 1.08, 95%CI = 0.29–4.04, P = 0.908). Conclusion: In contrast to previous reports, homozygosity for the Asp298 variant of the 894G>T polymorphism in the eNOS gene was not found to be associated with risk of AMI, extent of CAD and in-hospital mortality after AM

    Deciphering the genome structure and paleohistory of _Theobroma cacao_

    Get PDF
    We sequenced and assembled the genome of _Theobroma cacao_, an economically important tropical fruit tree crop that is the source of chocolate. The assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of them anchored on the 10 _T. cacao_ chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example flavonoid-related genes. It also provides a major source of candidate genes for _T. cacao_ disease resistance and quality improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten _T. cacao_ chromosomes were shaped from an ancestor through eleven chromosome fusions. The _T. cacao_ genome can be considered as a simple living relic of higher plant evolution

    Precise measurement of the thermal and stellar 54^{54}Fe(n,γn, \gamma)55^{55}Fe cross sections via AMS

    Get PDF
    The detection of long-lived radionuclides through ultra-sensitive single atom counting via accelerator mass spectrometry (AMS) offers opportunities for precise measurements of neutron capture cross sections, e.g. for nuclear astrophysics. The technique represents a truly complementary approach, completely independent of previous experimental methods. The potential of this technique is highlighted at the example of the 54^{54}Fe(n,γn, \gamma)55^{55}Fe reaction. Following a series of irradiations with neutrons from cold and thermal to keV energies, the produced long-lived 55^{55}Fe nuclei (t1/2=2.744(9)t_{1/2}=2.744(9) yr) were analyzed at the Vienna Environmental Research Accelerator (VERA). A reproducibility of about 1% could be achieved for the detection of 55^{55}Fe, yielding cross section uncertainties of less than 3%. Thus, the new data can serve as anchor points to time-of-flight experiments. We report significantly improved neutron capture cross sections at thermal energy (σth=2.30±0.07\sigma_{th}=2.30\pm0.07 b) as well as for a quasi-Maxwellian spectrum of kT=25kT=25 keV (σ=30.3±1.2\sigma=30.3\pm1.2 mb) and for En=481±53E_n=481\pm53 keV (σ=6.01±0.23\sigma= 6.01\pm0.23 mb). The new experimental cross sections have been used to deduce improved Maxwellian average cross sections in the temperature regime of the common ss-process scenarios. The astrophysical impact is discussed using stellar models for low-mass AGB stars

    The Physical and Genetic Framework of the Maize B73 Genome

    Get PDF
    Maize is a major cereal crop and an important model system for basic biological research. Knowledge gained from maize research can also be used to genetically improve its grass relatives such as sorghum, wheat, and rice. The primary objective of the Maize Genome Sequencing Consortium (MGSC) was to generate a reference genome sequence that was integrated with both the physical and genetic maps. Using a previously published integrated genetic and physical map, combined with in-coming maize genomic sequence, new sequence-based genetic markers, and an optical map, we dynamically picked a minimum tiling path (MTP) of 16,910 bacterial artificial chromosome (BAC) and fosmid clones that were used by the MGSC to sequence the maize genome. The final MTP resulted in a significantly improved physical map that reduced the number of contigs from 721 to 435, incorporated a total of 8,315 mapped markers, and ordered and oriented the majority of FPC contigs. The new integrated physical and genetic map covered 2,120 Mb (93%) of the 2,300-Mb genome, of which 405 contigs were anchored to the genetic map, totaling 2,103.4 Mb (99.2% of the 2,120 Mb physical map). More importantly, 336 contigs, comprising 94.0% of the physical map (∼1,993 Mb), were ordered and oriented. Finally we used all available physical, sequence, genetic, and optical data to generate a golden path (AGP) of chromosome-based pseudomolecules, herein referred to as the B73 Reference Genome Sequence version 1 (B73 RefGen_v1)

    Detailed Analysis of a Contiguous 22-Mb Region of the Maize Genome

    Get PDF
    Most of our understanding of plant genome structure and evolution has come from the careful annotation of small (e.g., 100 kb) sequenced genomic regions or from automated annotation of complete genome sequences. Here, we sequenced and carefully annotated a contiguous 22 Mb region of maize chromosome 4 using an improved pseudomolecule for annotation. The sequence segment was comprehensively ordered, oriented, and confirmed using the maize optical map. Nearly 84% of the sequence is composed of transposable elements (TEs) that are mostly nested within each other, of which most families are low-copy. We identified 544 gene models using multiple levels of evidence, as well as five miRNA genes. Gene fragments, many captured by TEs, are prevalent within this region. Elimination of gene redundancy from a tetraploid maize ancestor that originated a few million years ago is responsible in this region for most disruptions of synteny with sorghum and rice. Consistent with other sub-genomic analyses in maize, small RNA mapping showed that many small RNAs match TEs and that most TEs match small RNAs. These results, performed on ∼1% of the maize genome, demonstrate the feasibility of refining the B73 RefGen_v1 genome assembly by incorporating optical map, high-resolution genetic map, and comparative genomic data sets. Such improvements, along with those of gene and repeat annotation, will serve to promote future functional genomic and phylogenomic research in maize and other grasses

    Antiproton stopping power in hydrogen below 120 keV and the Barkas effect

    Get PDF
    The simultaneous measurement of the spatial coordinates and times of p¯s annihilating at rest in a H2 target at very low density ρ (ρ/ρ0<10-2, ρ0 being the STP density) gives the possibility of evaluating the behavior of the p¯ stopping power in H2 at low energies (below 120 keV). It is different from that of protons (the Barkas effect). Moreover, it is shown that a rise at low-energy values (≲1 keV) is needed to agree with experimental data

    Failure of human rhombic lip differentiation underlies medulloblastoma formation

    Get PDF
    Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain 1–4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage 5–8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL 9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage 3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES +KI67 + unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB

    AMS --A powerful tool for probing nucleosynthesis via long-lived radionuclides

    No full text
    Well-established data on production-rates of long-lived radionuclides are important for the understanding and calculation of various nucleosynthesis processes. However, lack of information exists for a list of nuclides as pointed out by nuclear-data requests. In addition, the search for supernova (SN)-produced radionuclides will give an improved insight into explosive scenarios. Accelerator mass spectrometry (AMS) represents a technique, which is capable to quantify such long-lived radionuclides using mass spectrometric methods. The potential of AMS is presented here as a powerful tool for probing nucleosynthesis. Applications of AMS are exemplified for a few specific cases: the detection of extraterrestrial radioactivity on Earth in terrestrial archives as a signature of nearby SN explosions, and the measurement of cross-sections, as an important ingredient for stellar as well as nuclear model calculations
    corecore