581 research outputs found

    Proximate and fatty acid composition of 40 southeastern U.S. finfish species

    Get PDF
    This report describes the proximate compositions (protein, moisture, fat, and ash) and major fatty acid profiles for raw and cooked samples of 40 southeastern finfish species. All samples (fillets) were cooked by a standard procedure in laminated plastic bags to an internal temperature of 70'C (lS8'F). Both summarized compositional data, with means and ranges for each species, and individual sample data including harvest dates and average lengths and weights are presented. When compared with raw samples, cooked samples exhibited an increase in protein content with an accompanying decrease in moisture content. Fat content either remained approximately the same or increased due to moisture loss during cooking. Our results are discussed in reference to compositional data previously published by others on some of the same species. Although additional data are needed to adequately describe the seasonal and geographic variations in the chemical compositions of many of these fish species, the results presented here should be useful to nutritionists, seafood marketers, and consumers.(PDF file contains 28 pages.

    The lithospheric-to-lower-mantle carbon cycle recorded in superdeep diamonds

    Get PDF
    The transport of carbon into Earth’s mantle is a critical pathway in Earth’s carbon cycle, affecting both the climate and the redox conditions of the surface and mantle. The largest unconstrained variables in this cycle are the depths to which carbon in sediments and altered oceanic crust can be subducted and the relative contributions of these reservoirs to the sequestration of carbon in the deep mantle1. Mineral inclusions in sublithospheric, or ‘superdeep’, diamonds (derived from depths greater than 250 kilometres) can be used to constrain these variables. Here we present oxygen isotope measurements of mineral inclusions within diamonds from Kankan, Guinea that are derived from depths extending from the lithosphere to the lower mantle (greater than 660 kilometres). These data, combined with the carbon and nitrogen isotope contents of the diamonds, indicate that carbonated igneous oceanic crust, not sediment, is the primary carbon-bearing reservoir in slabs subducted to deep-lithospheric and transition-zone depths (less than 660 kilometres). Within this depth regime, sublithospheric inclusions are distinctly enriched in 18O relative to eclogitic lithospheric inclusions derived from crustal protoliths. The increased 18O content of these sublithospheric inclusions results from their crystallization from melts of carbonate-rich subducted oceanic crust. In contrast, lower-mantle mineral inclusions and their host diamonds (deeper than 660 kilometres) have a narrow range of isotopic values that are typical of mantle that has experienced little or no crustal interaction. Because carbon is hosted in metals, rather than in diamond, in the reduced, volatile-poor lower mantle2, carbon must be mobilized and concentrated to form lower-mantle diamonds. Our data support a model in which the hydration of the uppermost lower mantle by subducted oceanic lithosphere destabilizes carbon-bearing metals to form diamond, without disturbing the ambient-mantle stable-isotope signatures. This transition from carbonate slab melting in the transition zone to slab dehydration in the lower mantle supports a lower-mantle barrier for carbon subduction

    Nitrogen-Functionalized Graphene Nanoflakes (GNFs:N): Tunable Photoluminescence and Electronic Structures

    Full text link
    This study investigates the strong photoluminescence (PL) and X-ray excited optical luminescence observed in nitrogen-functionalized 2D graphene nanoflakes (GNFs:N), which arise from the significantly enhanced density of states in the region of {\pi} states and the gap between {\pi} and {\pi}* states. The increase in the number of the sp2 clusters in the form of pyridine-like N-C, graphite-N-like, and the C=O bonding and the resonant energy transfer from the N and O atoms to the sp2 clusters were found to be responsible for the blue shift and the enhancement of the main PL emission feature. The enhanced PL is strongly related to the induced changes of the electronic structures and bonding properties, which were revealed by the X-ray absorption near-edge structure, X-ray emission spectroscopy, and resonance inelastic X-ray scattering. The study demonstrates that PL emission can be tailored through appropriate tuning of the nitrogen and oxygen contents in GNFs and pave the way for new optoelectronic devices.Comment: 8 pages, 6 figures (including toc figure

    Phylogeny and Biogeography of Hawkmoths (Lepidoptera: Sphingidae): Evidence from Five Nuclear Genes

    Get PDF
    The 1400 species of hawkmoths (Lepidoptera: Sphingidae) comprise one of most conspicuous and well-studied groups of insects, and provide model systems for diverse biological disciplines. However, a robust phylogenetic framework for the family is currently lacking. Morphology is unable to confidently determine relationships among most groups. As a major step toward understanding relationships of this model group, we have undertaken the first large-scale molecular phylogenetic analysis of hawkmoths representing all subfamilies, tribes and subtribes.The data set consisted of 131 sphingid species and 6793 bp of sequence from five protein-coding nuclear genes. Maximum likelihood and parsimony analyses provided strong support for more than two-thirds of all nodes, including strong signal for or against nearly all of the fifteen current subfamily, tribal and sub-tribal groupings. Monophyly was strongly supported for some of these, including Macroglossinae, Sphinginae, Acherontiini, Ambulycini, Philampelini, Choerocampina, and Hemarina. Other groupings proved para- or polyphyletic, and will need significant redefinition; these include Smerinthinae, Smerinthini, Sphingini, Sphingulini, Dilophonotini, Dilophonotina, Macroglossini, and Macroglossina. The basal divergence, strongly supported, is between Macroglossinae and Smerinthinae+Sphinginae. All genes contribute significantly to the signal from the combined data set, and there is little conflict between genes. Ancestral state reconstruction reveals multiple separate origins of New World and Old World radiations.Our study provides the first comprehensive phylogeny of one of the most conspicuous and well-studied insects. The molecular phylogeny challenges current concepts of Sphingidae based on morphology, and provides a foundation for a new classification. While there are multiple independent origins of New World and Old World radiations, we conclude that broad-scale geographic distribution in hawkmoths is more phylogenetically conserved than previously postulated

    Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Reaction

    Full text link
    Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low costs remains a grand challenge. Here, we report a hybrid material of Co3O4 nanocrystals grown on reduced graphene oxide (GO) as a high-performance bi-functional catalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). While Co3O4 or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen-doping of graphene. The Co3O4/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high performance non-precious metal based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co3O4 and graphene.Comment: published in Nature Material

    Impact of socioeconomic deprivation on rate and cause of death in severe mental illness

    Get PDF
    Background: Socioeconomic status has important associations with disease-specific mortality in the general population. Although individuals with Severe Mental Illnesses (SMI) experience significant premature mortality, the relationship between socioeconomic status and mortality in this group remains under investigated.<p></p> Aims: To assess the impact of socioeconomic status on rate and cause of death in individuals with SMI (schizophrenia and bipolar disorder) relative to the local (Glasgow) and wider (Scottish) populations.<p></p> Methods: Cause and age of death during 2006-2010 inclusive for individuals with schizophrenia or bipolar disorder registered on the Glasgow Psychosis Clinical Information System (PsyCIS) were obtained by linkage to the Scottish General Register Office (GRO). Rate and cause of death by socioeconomic status, measured by Scottish Index of Multiple Deprivation (SIMD), were compared to the Glasgow and Scottish populations.<p></p> Results: Death rates were higher in people with SMI across all socioeconomic quintiles compared to the Glasgow and Scottish populations, and persisted when suicide was excluded. Differences were largest in the most deprived quintile (794.6 per 10,000 population vs. 274.7 and 252.4 for Glasgow and Scotland respectively). Cause of death varied by socioeconomic status. For those living in the most deprived quintile, higher drug-related deaths occurred in those with SMI compared to local Glasgow and wider Scottish population rates (12.3% vs. 5.9%, p = <0.001 and 5.1% p = 0.002 respectively). A lower proportion of deaths due to cancer in those with SMI living in the most deprived quintile were also observed, relative to the local Glasgow and wider Scottish populations (12.3% vs. 25.1% p = 0.013 and 26.3% p = <0.001). The proportion of suicides was significantly higher in those with SMI living in the more affluent quintiles relative to Glasgow and Scotland (54.6% vs. 5.8%, p = <0.001 and 5.5%, p = <0.001). Discussion and conclusions: Excess mortality in those with SMI occurred across all socioeconomic quintiles compared to the Glasgow and Scottish populations but was most marked in the most deprived quintiles when suicide was excluded as a cause of death. Further work assessing the impact of socioeconomic status on specific causes of premature mortality in SMI is needed

    Vitalism in Early Modern Medical and Philosophical Thought

    Get PDF
    Vitalism is a notoriously deceptive term. It is very often defined as the view, in biology, in early modern medicine and differently, in early modern philosophy, that living beings differ from the rest of the physical universe due to their possessing an additional ‘life-force’, ‘vital principle’, ‘entelechy’, enormon or élan vital. Such definitions most often have an explicit pejorative dimension: vitalism is a primitive or archaic view, that has somehow survived the emergence of modern science (the latter being defined in many different ways, from demystified Cartesian reductionism to experimental medicine, biochemistry or genetics: Cimino and Duchesneau eds. 1997, Normandin and Wolfe eds. 2013). Such dismissive definitions of vitalism are meant to dispense with argument or analysis. Curiously, the term has gained some popularity in English-language scholarship on early modern philosophy in the past few decades, where it is used without any pejorative dimension, to refer to a kind of ‘active matter’ view, in which matter is not reducible to the (mechanistic) properties of size, shape and motion, possessing instead some internal dynamism or activity (see e.g. James 1999, Boyle 2018, Borcherding forthcoming). The latter meaning is close to what the Cambridge Platonist Ralph Cudworth termed ‘hylozoism’, namely the attribution of life, agency or mind to matter, and he implicitly targeted several figures I shall mention here, notably Margaret Cavendish and Francis Glisson, for holding this view. However, one point I shall make in this entry is that when vitalism first appears by name, and as a self-designation, in the Montpellier School (associated with the Faculty of Medicine at the University of Montpellier, in the second half of the eighteenth century; thus vitalisme appears first, followed shortly thereafter by Vitalismus in German, with ‘vitalism’ appearing in English publications only in the early nineteenth century: Toepfer 2011), it is quite different from both the more ‘supernatural’ view described above – chiefly espoused by its rather obsessive opponents – and from the more neutral, but also de-biologized philosophical view (that of e.g. Cavendish or Conway who are, broadly speaking naturalists). Rather than appealing to a metaphysics of vital force, or of self-organizing matter, this version of vitalism, which I shall refer to as ‘medical vitalism’, seems to be more of a ‘systemic’ theory: an attempt to grasp and describe top-level (‘organizational’, ‘organismic’, ‘holistic’) features of living systems (Wolfe 2017, 2019). In this entry I seek to introduce some periodization in our thinking about early modern (and Enlightenment) vitalism, emphasizing the difference between the seventeenth-century context and that of the following generations – culminating in the ideas of the Montpellier School. This periodization should also function as a kind of taxonomy or at least distinction between some basic types of vitalism. As I discuss in closing, these distinctions can cut across the texts and figures we are dealing with, differently: metaphysical vs. non-metaphysical vitalism, philosophical vs. medical vitalism, medical vs. ‘embryological’ vitalism, and so on. A difference I can only mention but not explore in detail is that the more medically grounded, ‘organismic’ vitalism is significantly post-Cartesian while the more biological/embryological vitalism is, inasmuch as it is a dynamic, self-organizing matter theory, an extension of Renaissance ideas (chymiatry, Galenism and in general theories of medical spirits). I examine successively vitalism’s Renaissance prehistory, its proliferation as ‘vital matter theory’ in seventeenth-century England (in authors such as Cavendish, Conway and Glisson, with brief considerations on Harvey and van Helmont), and its mature expression in eighteenth-century Montpellier (notably with Bordeu and Ménuret de Chambaud)

    Nature of the electronic states involved in the chemical bonding and superconductivity at high pressure in SnO

    Full text link
    We have investigated the electronic structure and the Fermi surface of SnO using density functional theory (DFT) calculations within recently proposed exchange-correlation potential (PBE+mBJ) at ambient conditions and high pressures up to 19.3 GPa where superconductivity was observed. It was found that the Sn valence states 5s, 5p, and 5d are strongly hybridized with the O 2p-states, and that our DFT-calculations are in good agreement with O K-edge X-ray spectroscopy measurements for both occupied and empty states. It was demonstrated that the metallic states appearing under pressure in the semiconducting gap stem due to the transformation of the weakly hybridized O 2p-Sn 5sp subband corresponding to the lowest valence state of Sn in SnO. We discuss the nature of the electronic states involved in chemical bonding and formation of the hole and electron pockets with nesting as a possible way to superconductivity.Comment: 5 pages, 6 figure

    Arthropod Phylogenetics in Light of Three Novel Millipede (Myriapoda: Diplopoda) Mitochondrial Genomes with Comments on the Appropriateness of Mitochondrial Genome Sequence Data for Inferring Deep Level Relationships

    Get PDF
    Background Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. Results The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. Conclusions The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect. As such, these data are likely inappropriate for investigating such ancient relationships

    Aging in language dynamics

    Get PDF
    Human languages evolve continuously, and a puzzling problem is how to reconcile the apparent robustness of most of the deep linguistic structures we use with the evidence that they undergo possibly slow, yet ceaseless, changes. Is the state in which we observe languages today closer to what would be a dynamical attractor with statistically stationary properties or rather closer to a non-steady state slowly evolving in time? Here we address this question in the framework of the emergence of shared linguistic categories in a population of individuals interacting through language games. The observed emerging asymptotic categorization, which has been previously tested - with success - against experimental data from human languages, corresponds to a metastable state where global shifts are always possible but progressively more unlikely and the response properties depend on the age of the system. This aging mechanism exhibits striking quantitative analogies to what is observed in the statistical mechanics of glassy systems. We argue that this can be a general scenario in language dynamics where shared linguistic conventions would not emerge as attractors, but rather as metastable states
    corecore